SELF-ADJOINT INTERPOLATION FOR OPERATORS IN TRIDIAGONAL ALGEBRAS

Joo Ho Kang and Young Soo Jo

ABSTRACT. Given operators X and Y acting on a Hilbert space \mathcal{H} , an interpolating operator is a bounded operator A such that AX = Y. An interpolating operator for n-operators satisfies the equation $AX_i = Y_i$ for $i = 1, 2, \dots, n$. In this article, we obtained the following: Let $X = (x_{ij})$ and $Y = (y_{ij})$ be operators in $\mathcal{B}(\mathcal{H})$ such that $x_{i\sigma(i)} \neq 0$ for all i. Then the following statements are equivalent.

(1) There exists an operator A in $Alg \mathcal{L}$ such that AX = Y, every E in \mathcal{L} reduces A and A is a self-adjoint operator.

$$(2) \sup \left\{ \frac{\|\sum_{i=1}^n E_i Y f_i\|}{\|\sum_{i=1}^n E_i X f_i\|} : n \in \mathbb{N}, E_i \in \mathcal{L} \text{ and } f_i \in \mathcal{H} \right\} < \infty \text{ and } \overline{x_{i,\sigma(i)}} y_{i,\sigma(i)} \text{ is real for all } i = 1, 2, \cdots.$$

1. Introduction

Let \mathcal{C} be a collection of operators acting on a Hilbert space \mathcal{H} and let X and Y be operators acting on \mathcal{H} . An interpolation question for \mathcal{C} asks for which X and Y is there a bounded operator T in \mathcal{C} such that TX = Y. A variation, the 'n-operator interpolation problem', asks for an operator T such that $TX_i = Y_i$ for fixed finite collections $\{X_1, X_2, \dots, X_n\}$ and $\{Y_1, Y_2, \dots, Y_n\}$.

In this article, we investigate self-adjoint interpolation problems in tridiagonal algebras: Given operators X and Y acting on a Hilbert space \mathcal{H} , when does there exists a self-adjoint operator A in a tridiagonal algebra such that AX = Y?

Received July 10, 2001. Revised February 26, 2002.

²⁰⁰⁰ Mathematics Subject Classification: 47L35.

Key words and phrases: interpolation problem, self-adjoint interpolation, tridiagonal algebra, Alg \mathcal{L} , CSL-algebra.

First, we establish some notations and conventions. A commutative subspace lattice \mathcal{L} , or CSL \mathcal{L} is a strongly closed lattice of pairwise-commuting projections acting on a Hilbert space \mathcal{H} . We assume that the projections 0 and I lie in \mathcal{L} . We usually identify projections and their ranges, so that it makes sense to speak of an operator as leaving a projection invariant. If \mathcal{L} is CSL, $\mathrm{Alg}\mathcal{L}$ is called a CSL-algebra. The symbol $\mathrm{Alg}\mathcal{L}$ is the algebra of all bounded linear operators on \mathcal{H} that leave invariant all the projections in \mathcal{L} . Let \mathbb{N} be the set of all natural numbers and let \mathbb{C} be the set of all complex numbers. Let $z \in \mathbb{C}$. Then \overline{z} means the complex conjugate of z.

2. Results

Let \mathcal{H} be a separable complex Hilbert space with a fixed orthonormal basis $\{e_1, e_2, \cdots\}$. Let x_1, x_2, \cdots, x_n be vectors in \mathcal{H} . Then $[x_1, x_2, \cdots, x_n]$ means the closed subspace generated by the vectors x_1, x_2, \cdots, x_n . Let M be a subset of a Hilbert space \mathcal{H} . Then \overline{M} means the closure of M and \overline{M}^{\perp} the orthogonal complement of M. Let \mathcal{L} be a subspace lattice of orthogonal projections generated by the subspaces $[e_{2k-1}], [e_{2k-1}, e_{2k}, e_{2k+1}]$ $(k=1,2,\cdots)$. Then the algebra $\mathrm{Alg}\mathcal{L}$ is called a tridiagonal algebra which was introduced by F . Gilfeather and D. Larson [3]. These algebras have been found to be useful counterexamples to a number of plausible conjectures. Recently, such algebras have been found to be use in physics, in electrical engineering and in general system theory.

Let ${\mathcal A}$ be the algebra consisting of all bounded operators acting on ${\mathcal H}$ of the form

with respect to the orthonormal basis $\{e_1, e_2, \dots\}$, where all non-starred entries are zero. It is easy to see that $Alg\mathcal{L}=\mathcal{A}$. Let $D=\{A:A \text{ is diagonal in } \mathcal{B}(\mathcal{H}) \}$. Then D is a masa of $Alg\mathcal{L}$ and $D=(Alg\mathcal{L})\cap (Alg\mathcal{L})^*$, where $(Alg\mathcal{L})^* = \{A^*: A \in Alg\mathcal{L}\}$.

In this paper, we use the convention $\frac{0}{0} = 0$, when necessary.

From now, let $\sigma: \mathbb{N} \to \mathbb{N}$ be a mapping in this paper.

THEOREM 1. Let $X = (x_{ij})$ and $Y = (y_{ij})$ be operators in $\mathcal{B}(\mathcal{H})$ such that $x_{i\sigma(i)} \neq 0$ for all i. Then the following statements are equivalent.

(1) There exists an operator A in Alg \mathcal{L} such that AX = Y, every E in \mathcal{L} reduces A and A is a self-adjoint operator.

$$\frac{(2)}{x_{i,\sigma(i)}} \sup \left\{ \frac{\|\sum_{i=1}^n E_i Y f_i\|}{\|\sum_{i=1}^n E_i X f_i\|} : n \in \mathbb{N}, E_i \in \mathcal{L} \text{ and } f_i \in \mathcal{H} \right\} < \infty \text{ and }$$
 and
$$\frac{x_{i,\sigma(i)} y_{i,\sigma(i)}}{x_{i,\sigma(i)}} \text{ is real for all } i = 1, 2, \cdots.$$

Proof. (1) \Rightarrow (2) : Since E reduces A and AX = Y, AEX = EY for every E in \mathcal{L} . So $A(\sum_{i=1}^n E_i X f_i) = \sum_{i=1}^n E_i Y f_i$ and hence $\|\sum_{i=1}^n E_i Y f_i\| \le \|A\| \|\sum_{i=1}^n E_i X f_i\|$, $n \in \mathbb{N}$, $E_i \in \mathcal{L}$ and $f_i \in \mathcal{H}$. If $\|\sum_{i=1}^n E_i X f_i\| \ne 0$, then $\|\sum_{i=1}^n E_i Y f_i\| \le \|A\|$.

Hence $\sup\left\{\frac{\|\sum_{i=1}^n E_i Y f_i\|}{\|\sum_{i=1}^n E_i X f_i\|}: n \in \mathbb{N}, \ E_i \in \mathcal{L}, \ \text{and} \ f_i \in \mathcal{H}\right\} < \infty.$ Since every E in \mathcal{L} reduces A, A is a diagonal operator. Let $A = (a_{ii})$. Since AX = Y, $y_{ij} = a_{ii}x_{ij}$ for all i and all j. Since A is a self-adjoint operator, $\overline{x_{i,\sigma(i)}}y_{i,\sigma(i)}$ is real for all $i = 1, 2, \cdots$.

(2) \Rightarrow (1) : If $\sup \left\{ \frac{\|\sum_{i=1}^n E_i Y f_i\|}{\|\sum_{i=1}^n E_i X f_i\|} : n \in \mathbb{N}, E_i \in \mathcal{L} \text{ and } f_i \in \mathcal{H} \right\} < \infty$, then without loss of generality, we may assume that

$$\sup\left\{\frac{\|\sum_{i=1}^n E_i Y f_i\|}{\|\sum_{i=1}^n E_i X f_i\|}: n \in \mathbb{N}, E_i \in \mathcal{L} \text{ and } f_i \in \mathcal{H}\right\} = 1. \text{ So,}$$

 $\|\sum_{i=1}^{n} E_i Y f_i\| \le \|\sum_{i=1}^{n} E_i X f_i\|, n \in \mathbb{N}, E_i \in \mathcal{L} \text{ and } f_i \in \mathcal{H} \cdots (*).$

Let
$$\mathcal{M} = \left\{ \sum_{i=1}^{n} E_i X f_i : n \in \mathbb{N}, E_i \in \mathcal{L} \text{ and } f_i \in \mathcal{H} \right\}$$
. Then \mathcal{M} is a linear manifold.

Define $A: \mathcal{M} \longrightarrow \mathcal{H}$ by $A(\sum_{i=1}^n E_i X f_i) = \sum_{i=1}^n E_i Y f_i$. Then A is well-defined by (*). Extend A to $\overline{\mathcal{M}}$ by continuity. Define $A|_{\overline{\mathcal{M}}^{\perp}} = 0$. Then $\|A\| \leq 1$ and AX = Y. $AE(\sum_{i=1}^n E_i X f_i) = A(\sum_{i=1}^n E E_i X f_i) = \sum_{i=1}^n E E_i Y f_i$ and $EA(\sum_{i=1}^n E_i X f_i) = E(\sum_{i=1}^n E_i Y f_i) = \sum_{i=1}^n E E_i Y f_i$. And EA(g) = E(0) = 0 and AE(g) = 0 for g in $\overline{\mathcal{M}}^{\perp}$ since $\langle Eg, \sum_{i=1}^n E_i X f_i \rangle = \langle g, \sum_{i=1}^n E E_i X f_i \rangle = 0$. Hence every E in \mathcal{L} reduces A. Therefore, A is a diagonal operator. Let $A = (a_{ii})$. Since AX = Y, $y_{ij} = a_{ii}x_{ij}$ for all i and all j. Since $\overline{x_{i,\sigma(i)}}y_{i,\sigma(i)}$ is real for all $i = 1, 2, \cdots$, A is a self-adjoint operator.

Theorem 2. Let $X_p=(x_{ij}^{(p)})$ and $Y_p=(y_{ij}^{(p)})$ be operators in $\mathcal{B}(\mathcal{H})$ $(p=1,2,\cdots,n)$ such that $x_{i\sigma(i)}^{(q)}\neq 0$ for some q. Then the following statements are equivalent.

(1) There exists an operator A in $Alg\mathcal{L}$ such that $AX_p = Y_p$ ($p = 1, 2, \dots, n$), every E in \mathcal{L} reduces A and A is a self-adjoint operator.

$$(2) \sup \left\{ \frac{\|\sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} Y_i f_{k,i}\|}{\|\sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} X_i f_{k,i}\|} : m_i \in \mathbb{N}, l \leq n, E_{k,i} \in \mathcal{L} \text{ and } f_{k,i} \in \mathcal{H} \right\} < \infty \text{ and } \overline{x_{i,\sigma(i)}^{(q)}} y_{i,\sigma(i)}^{(q)} \text{ is real for all } i = 1, 2, \cdots.$$

Proof. We assume the condition (2) holds. Then, without loss of generality, we may

$$\text{assume that } \sup \left\{ \frac{\|\sum_{i=1}^l \sum_{k=1}^{m_i} E_{k,i} Y_i f_{k,i}\|}{\|\sum_{i=1}^l \sum_{k=1}^{m_i} E_{k,i} X_i f_{k,i}\|} \ : \ l \leq n, m_i \in \mathbb{N}, E_{k,i} \in \mathcal{L}$$
 and
$$f_{k,i} \in \mathcal{H} \right\} = 1.$$

Then
$$\|\sum_{i=1}^l \sum_{k=1}^{m_i} E_{k,i} Y_i f_{k,i}\| \le \|\sum_{i=1}^l \sum_{k=1}^{m_i} E_{k,i} X_i f_{k,i}\| \cdot \cdot \cdot \cdot \cdot (*)$$
.

Let
$$\mathcal{M} = \left\{ \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} X_i f_{k,i} : l \leq n, m_i \in \mathbb{N}, E_{k,i} \in \mathcal{L} \text{ and } f_{k,i} \in \mathcal{H} \right\}.$$

Then \mathcal{M} is a linear manifold. Define $A: \mathcal{M} \to \mathcal{H}$ by $A(\sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} X_i f_{k,i}) = \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} Y_i f_{k,i}$. Then A is well-defined by (*). Extend A to $\overline{\mathcal{M}}$ by continuity. Define $A|_{\overline{\mathcal{M}}^{\perp}} = 0$. Clearly $AX_p = Y_p$ and we know that $||A|_{\mathcal{M}}|| \leq 1$ $(p = 1, 2, \dots, n)$. For $m_i \in \mathbb{N}$, $l \leq n$, $E_{k,i} \in \mathcal{L}$ and $f_{k,i} \in \mathcal{H}$,

$$AE\left(\sum_{i=1}^{l}\sum_{k=1}^{m_{i}}E_{k,i}X_{i}f_{k,i}\right) = A\left(\sum_{i=1}^{l}\sum_{k=1}^{m_{i}}EE_{k,i}X_{i}f_{k,i}\right)$$
$$= \sum_{i=1}^{l}\sum_{k=1}^{m_{i}}EE_{k,i}Y_{i}f_{k,i},$$

$$EA\left(\sum_{i=1}^{l}\sum_{k=1}^{m_{i}}E_{k,i}X_{i}f_{k,i}\right) = E\left(\sum_{i=1}^{l}\sum_{k=1}^{m_{i}}E_{k,i}Y_{i}f_{k,i}\right)$$
$$= \sum_{i=1}^{l}\sum_{k=1}^{m_{i}}EE_{k,i}Y_{i}f_{k,i}.$$

For every g in $\overline{\mathcal{M}}^{\perp}$, EAg = E0 = 0 and AEg = 0 since $\langle Eg, \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} X_i f_{k,i} \rangle = \langle g, \sum_{i=1}^{l} \sum_{k=1}^{m_i} EE_{k,i} X_i f_{k,i} \rangle = 0$. So every E in \mathcal{L} reduces A. Therefore, A is diagonal. Let $A = (a_{ii})$. Since $AX_p = Y_p$, $y_{ij}^{(p)} = a_{ii} x_{ij}^{(p)}$ for all i, j, and $p = 1, 2, \dots, n$. Since $\overline{x_{i,\sigma(i)}^{(q)}} y_{i,\sigma(i)}^{(q)}$ is real for all $i = 1, 2, \dots, A$ is a self-adjoint operator.

Conversely, if the condition (1) holds, then $EAX_i = AEX_i = EY_i$ for every E in \mathcal{L} $(i=1,2,\cdots,n)$. So $AEX_if = EY_if$ for every E in \mathcal{L} and every f in \mathcal{H} $(i=1,2,\cdots,n)$. Thus $A(\sum_{i=1}^{l}\sum_{k=1}^{m_i}E_{k,i}X_if_{k,i}) = \sum_{i=1}^{l}\sum_{k=1}^{m_i}E_{k,i}Y_if_{k,i}$, for $m_i \in \mathbb{N}$, $l \leq n$, $E_{k,i} \in \mathcal{L}$ and $f_{k,i} \in \mathcal{H}$. So

$$\begin{aligned} \| \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} Y_i f_{k,i} \| &\leq \| A (\sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} X_i f_{k,i}) \| \\ &\leq \| A \| \| \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} X_i f_{k,i} \|. \end{aligned}$$

If
$$\|\sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} X_i f_{k,i}\| \neq 0$$
, then $\frac{\|\sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} Y_i f_{ki}\|}{\|\sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} X_i f_{ki}\|} \leq \|A\|$.

Hence,
$$\sup \left\{ \frac{\|\sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} Y_i f_{k,i}\|}{\|\sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} X_i f_{k,i}\|} : l \leq n, m_i \in \mathbb{N}, E_{k,i} \in \mathcal{L} \text{ and } f_{k,i} \in \mathcal{H} \right\} \leq \|A\|.$$

Since every E in \mathcal{L} reduces A, A is diagonal. Let $A=(a_{ii})$. Since $AX_p=Y_p, \ y_{ij}^{(p)}=a_{ii}x_{ij}^{(p)}$ for all i,j, and p. Since A is a self-adjoint operator, $x_{i,\sigma(i)}^{(q)}y_{i,\sigma(i)}^{(q)}$ is real for all $i=1,2,\cdots$.

THEOREM 3. Let $X_p = (x_{ij}^{(p)})$ and $Y_p = (y_{ij}^{(p)})$ be in $\mathcal{B}(\mathcal{H})$ $(p = 1, 2, \cdots)$ such that $x_{i\sigma(i)}^{(q)} \neq 0$ for some fixed q and for all i. Then the following statements are equivalent.

(1) There exists an operator A in $Alg\mathcal{L}$ such that $AX_p = Y_p$ ($p = 1, 2, \dots$), every E in \mathcal{L} reduces A and A is a self-adjoint operator.

$$(2) \sup \left\{ \frac{\|\sum_{i=1}^{l} \sum_{k=1}^{m_{i}} E_{k,i} Y_{i} f_{k,i}\|}{\|\sum_{i=1}^{l} \sum_{k=1}^{m_{i}} E_{k,i} X_{i} f_{k,i}\|} : m_{i}, l \in \mathbb{N}, E_{k,i} \in \mathcal{L} \text{ and } f_{k,i} \in \mathcal{H} \right\}$$

$$< \infty \text{ and } \overline{x_{i,\sigma(i)}^{(q)} y_{i,\sigma(i)}^{(q)} \text{ is real for all } i = 1, 2, \cdots.$$

Proof. If
$$\sup \left\{ \frac{\|\sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} Y_i f_{k,i}\|}{\|\sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} X_i f_{k,i}\|} : l, m_i \in \mathbb{N}, E_{k,i} \in \mathcal{L} \text{ and } \right\}$$

 $f_{k,i} \in \mathcal{H}$ $\left. < \infty, \text{ then without loss of generality, we may assume that} \right.$

$$\sup \left\{ \frac{\|\sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} Y_i f_{k,i}\|}{\|\sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} X_i f_{k,i}\|} : l, m_i \in \mathbb{N}, E_{k,i} \in \mathcal{L} \text{ and } f_{k,i} \in \mathcal{H} \right\} = 1.$$

So
$$\|\sum_{i=1}^l \sum_{k=1}^{m_i} E_{k,i} Y_i f_{k,i}\| \le \|\sum_{i=1}^l \sum_{k=1}^{m_i} E_{k,i} X_i f_{k,i}\| \cdot \cdot \cdot \cdot \cdot (*).$$

Let
$$\mathcal{M} = \left\{ \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} X_i f_{k,i} : l, m_i \in \mathbb{N}, E_{k,i} \in \mathcal{L} \text{ and } f_{k,i} \in \mathcal{H} \right\}.$$

Then \mathcal{M} is a linear manifold. Define $A:\mathcal{M}\to\mathcal{H}$ by $A(\sum_{i=1}^l\sum_{k=1}^{m_i}E_{k,i}X_if_{k,i})=\sum_{i=1}^l\sum_{k=1}^{m_i}E_{k,i}Y_if_{k,i}$. Then A is well-defined by (*). Extend A to $\overline{\mathcal{M}}$ by continuity. Define $A|_{\overline{\mathcal{M}}^\perp}=0$. Clearly $AX_p=Y_p$ and we know that $\|A|_{\mathcal{M}}\|\leq 1$ $(p=1,2,\cdots)$.

$$AE\left(\sum_{i=1}^{l}\sum_{k=1}^{m_{i}}E_{k,i}X_{i}f_{k,i}\right) = A\left(\sum_{i=1}^{l}\sum_{k=1}^{m_{i}}EE_{k,i}X_{i}f_{k,i}\right)$$
$$= \sum_{i=1}^{l}\sum_{k=1}^{m_{i}}EE_{k,i}Y_{i}f_{k,i}$$

and

$$EA\left(\sum_{i=1}^{l}\sum_{k=1}^{m_{i}}E_{k,i}X_{i}f_{k,i}\right) = E\left(\sum_{i=1}^{l}\sum_{k=1}^{m_{i}}E_{k,i}Y_{i}f_{k,i}\right)$$
$$= \sum_{i=1}^{l}\sum_{k=1}^{m_{i}}EE_{k,i}Y_{i}f_{k,i}.$$

For every g in $\overline{\mathcal{M}}^{\perp}$, EA(g)=E(0)=0 and AE(g)=0 since

$$\langle Eg, \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} X_i f_{k,i} \rangle = \langle g, \sum_{i=1}^{l} \sum_{k=1}^{m_i} EE_{k,i} X_i f_{k,i} \rangle = 0.$$

So every E in \mathcal{L} reduces A. Therefore, A is diagonal. Let $A=(a_{ii})$. Since $AX_p=Y_p,\ y_{ij}^{(p)}=a_{ii}x_{ij}^{(p)}$ for all $i,\ j,\$ and $p=1,2,\cdots.$ Since $\overline{x_{i,\sigma(i)}^{(q)}y_{i,\sigma(i)}^{(q)}}$ is real for all $i=1,2,\cdots,A$ is a self-adjoint operator.

Conversely, if $AX_i = Y_i$, then $EAX_i = AEX_i = EY_i$ for every E in \mathcal{L} $(i=1,2,\cdots)$. So $AEX_if = EY_if$ for every E in \mathcal{L} and every f in \mathcal{H} $(i=1,2,\cdots)$. Thus $A(\sum_{i=1}^l \sum_{k=1}^{m_i} E_{k,i} X_i f_{k,i}) = \sum_{i=1}^l \sum_{k=1}^{m_i} E_{k,i} x Y_i f_{k,i}$, $m_i, l \in \mathbb{N}, E_{k,i} \in \mathcal{L}$ and $f_{k,i} \in \mathcal{H}$. So

$$\begin{split} \left\| \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} Y_i f_{k,i} \right\| &\leq \left\| A \left(\sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} X_i f_{k,i} \right) \right\| \\ &\leq \left\| A \right\| \left\| \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} X_i f_{k,i} \right\|. \end{split}$$

If
$$\|\sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} X_i f_{k,i}\| \neq 0$$
, then $\frac{\|\sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} Y_i f_{ki}\|}{\|\sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} X_i f_{ki}\|} \leq \|A\|$.

$$\begin{split} & \text{Hence sup} \left\{ \frac{\| \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} Y_i f_{k,i} \|}{\| \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} X_i f_{k,i} \|} : l, m_i \in \mathbb{N}, \, E_{k,i} \in \mathcal{L} \; \text{ and } f_{k,i} \in \mathcal{H} \right\} \leq \|A\|. \end{split}$$

Since every E in \mathcal{L} reduces A, A is diagonal. Let $A=(a_{ii})$. Since $AX_p=Y_p, \ y_{ij}^{(p)}=a_{ii}x_{ij}^{(p)}$ for all p, i, and j. Since A is a self-adjoint operator, $\overline{x_{i,\sigma(i)}^{(q)}y_{i,\sigma(i)}^{(q)}}$ is real for all $i=1,2,\cdots$.

References

- [1] W. B. Arveson, *Interpolation problems in nest algebras*, J. Functional Analysis **3** (1975), 208–233.
- [2] R. G. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413–415.

- [3] F. Gilfeather and D. Larson, Commutants modulo the compact operators of certain CSL algebras, Operator Theory: Adv. Appl. 2 (Birkhauser, Basel, 1981), 105–120.
- [4] A. Hopenwasser, The equation Tx = y in a reflexive operator algebra, Indiana University Math. J. 29 (1980), 121–126.
- [5] _____, Hilbert-Schmidt interpolation in CSL algebras, Illinois J. Math. 33 (1989), 657-672.
- [6] Y. S. Jo, *Isometries of Tridiagonal Algebras*, Pacific Journal of Mathematics **140** (1989), no.1, 97–115.
- [7] Y. S. Jo and T. Y. Choi, *Isomorphisms of AlgL*_n and $AlgL_{\infty}$, Michigan Math. J. **37** (1990), 305–314.
- Y. S. Jo and J. H. Kang, Interpolation problems in CSL-Algebra AlgL, to appear in Rocky Mountain Journal of Math.
- [9] R. Kadison, Irreducible Operator Algebras, Proc. Nat. Acad. Sci. U. S. A. (1957), 273–276.
- [10] E. G. Katsoulis; R. L. Moore; T. T. Trent, Interpolation in nest algebras and applications to operator corona theorems, J. Operator Theory 29 (1993), 115– 123
- [11] E. C. Lance, Some properties of nest algebras, Proc. London Math. Soc. 19 (1969), 45-68.
- [12] N. Munch, Compact causal data interpolation, Aarhus University reprint series no. 11, 1986–1987.

Joo Ho Kang, Department of Mathematics, Taegu University, Taegu 713-714, Korea

E-mail: jhkang@biho.taegu.ac.kr

Young Soo Jo, Department of Mathematics, Keimyung University, Taegu 704-701, Korea

E-mail: ysjo@kmucc.keimyung.ac.kr