SELF-ADJOINT INTERPOLATION FOR OPERATORS IN TRIDIAGONAL ALGEBRAS

JOO HO KANG AND YOUNG SOO JO

ABSTRACT. Given operators X and Y acting on a Hilbert space \mathcal{H}, an interpolating operator is a bounded operator A such that $AX = Y$. An interpolating operator for n-operators satisfies the equation $AX_i = Y_i$ for $i = 1, 2, \ldots, n$. In this article, we obtained the following: Let $X = (x_{ij})$ and $Y = (y_{ij})$ be operators in $\mathcal{B}(\mathcal{H})$ such that $x_{i\sigma(i)} \neq 0$ for all i. Then the following statements are equivalent.

1. There exists an operator A in $\text{Alg} \mathcal{L}$ such that $AX = Y$, every E in \mathcal{L} reduces A and A is a self-adjoint operator.

2. $\sup \left\{ \frac{\sum_{i=1}^{n} E_iX_i f_i}{\sum_{i=1}^{n} E_i X_i f_i} : n \in \mathbb{N}, E_i \in \mathcal{L} \text{ and } f_i \in \mathcal{H} \right\} < \infty$

and $x_{i\sigma(i)} y_{i\sigma(i)}$ is real for all $i = 1, 2, \ldots$.

1. Introduction

Let \mathcal{C} be a collection of operators acting on a Hilbert space \mathcal{H} and let X and Y be operators acting on \mathcal{H}. An interpolation question for \mathcal{C} asks for which X and Y is there a bounded operator T in \mathcal{C} such that $TX = Y$. A variation, the `n-operator interpolation problem', asks for an operator T such that $TX_i = Y_i$ for fixed finite collections $\{X_1, X_2, \ldots, X_n\}$ and $\{Y_1, Y_2, \ldots, Y_n\}$.

In this article, we investigate self-adjoint interpolation problems in tridiagonal algebras: Given operators X and Y acting on a Hilbert space \mathcal{H}, when does there exists a self-adjoint operator A in a tridiagonal algebra such that $AX = Y$?

2000 Mathematics Subject Classification: 47L35.

Key words and phrases: interpolation problem, self-adjoint interpolation, tridiagonal algebra, Alg \mathcal{L}, CSL-algebra.
First, we establish some notations and conventions. A commutative subspace lattice L, or CSL \mathcal{L} is a strongly closed lattice of pairwise-commuting projections acting on a Hilbert space \mathcal{H}. We assume that the projections 0 and I lie in L. We usually identify projections and their ranges, so that it makes sense to speak of an operator as leaving a projection invariant. If L is CSL, AlgL is called a CSL-algebra. The symbol AlgL is the algebra of all bounded linear operators on \mathcal{H} that leave invariant all the projections in L. Let \mathbb{N} be the set of all natural numbers and let \mathbb{C} be the set of all complex numbers. Let $z \in \mathbb{C}$. Then \overline{z} means the complex conjugate of z.

2. Results

Let \mathcal{H} be a separable complex Hilbert space with a fixed orthonormal basis $\{e_1, e_2, \cdots\}$. Let x_1, x_2, \cdots, x_n be vectors in \mathcal{H}. Then $[x_1, x_2, \cdots, x_n]$ means the closed subspace generated by the vectors x_1, x_2, \cdots, x_n. Let M be a subset of a Hilbert space \mathcal{H}. Then \overline{M} means the closure of M and \overline{M}^\perp the orthogonal complement of M. Let \mathcal{L} be a subspace lattice of orthogonal projections generated by the subspaces $[e_{2k-1}, e_{2k-1}, e_{2k}, e_{2k+1}]$ ($k = 1, 2, \cdots$). Then the algebra AlgL is called a tridiagonal algebra which was introduced by F. Gilfeather and D. Larson [3]. These algebras have been found to be useful counterexamples to a number of plausible conjectures. Recently, such algebras have been found to be use in physics, in electrical engineering and in general system theory.

Let \mathcal{A} be the algebra consisting of all bounded operators acting on \mathcal{H} of the form

\[
\begin{pmatrix}
* & * \\
* & * \\
& * \\
& & * \\
& & & & \ddots
\end{pmatrix}
\]

with respect to the orthonormal basis $\{e_1, e_2, \cdots\}$, where all non-starred entries are zero. It is easy to see that AlgL $= \mathcal{A}$. Let $D = \{A : A$ is diagonal in $B(\mathcal{H}) \}$. Then D is a masa of AlgL and $D = (\text{Alg$L$}) \cap (\text{Alg$L$})^*$, where $(\text{Alg$L$})^* = \{A^* : A \in \text{AlgL}\}$.

In this paper, we use the convention $\frac{0}{0} = 0$, when necessary.

From now, let $\sigma : \mathbb{N} \to \mathbb{N}$ be a mapping in this paper.
Self-adjoint interpolation for operators in tridiagonal algebras

THEOREM 1. Let $X = (x_{ij})$ and $Y = (y_{ij})$ be operators in $B(H)$ such that $x_{i\sigma(i)} \neq 0$ for all i. Then the following statements are equivalent.

(1) There exists an operator A in AlgC such that $AX = Y$, every E in L reduces A and A is a self-adjoint operator.

(2) $\sup \left\{ \left\| \frac{\sum_{i=1}^{n} E_i Y f_i}{\sum_{i=1}^{n} E_i X f_i} \right\| : n \in \mathbb{N}, E_i \in \mathcal{L} \text{ and } f_i \in \mathcal{M} \right\} < \infty$ and $\bar{x}_{i,\sigma(i)} y_{i,\sigma(i)}$ is real for all $i = 1, 2, \ldots$.

Proof. (1) \Rightarrow (2): Since E reduces A and $AX = Y$, $AE = EY$ for every E in L. So $A(\sum_{i=1}^{n} E_i X f_i) = \sum_{i=1}^{n} E_i Y f_i$ and hence $\left\| \sum_{i=1}^{n} E_i Y f_i \right\| \leq \|A\| \left\| \sum_{i=1}^{n} E_i X f_i \right\|$, $n \in \mathbb{N}$, $E_i \in \mathcal{L}$ and $f_i \in \mathcal{M}$. If $\left\| \sum_{i=1}^{n} E_i X f_i \right\| \neq 0$, then $\left\| \frac{\sum_{i=1}^{n} E_i Y f_i}{\sum_{i=1}^{n} E_i X f_i} \right\| \leq \|A\|$. Hence $\sup \left\{ \left\| \frac{\sum_{i=1}^{n} E_i Y f_i}{\sum_{i=1}^{n} E_i X f_i} \right\| : n \in \mathbb{N}, E_i \in \mathcal{L}, \text{ and } f_i \in \mathcal{M} \right\} < \infty$. Since every E in L reduces A, A is a diagonal operator. Let $A = (a_{ii})$. Since $AX = Y$, $y_{ij} = a_{ii} x_{ij}$ for all i and all j. Since A is a self-adjoint operator, $\bar{x}_{i,\sigma(i)} y_{i,\sigma(i)}$ is real for all $i = 1, 2, \ldots$.

(2) \Rightarrow (1): If $\sup \left\{ \left\| \frac{\sum_{i=1}^{n} E_i Y f_i}{\sum_{i=1}^{n} E_i X f_i} \right\| : n \in \mathbb{N}, E_i \in \mathcal{L} \text{ and } f_i \in \mathcal{M} \right\} < \infty$, then without loss of generality, we may assume that $\sup \left\{ \left\| \frac{\sum_{i=1}^{n} E_i Y f_i}{\sum_{i=1}^{n} E_i X f_i} \right\| : n \in \mathbb{N}, E_i \in \mathcal{L} \text{ and } f_i \in \mathcal{M} \right\} = 1$. So, $\left\| \sum_{i=1}^{n} E_i Y f_i \right\| \leq \left\| \sum_{i=1}^{n} E_i X f_i \right\|$, $n \in \mathbb{N}$, $E_i \in \mathcal{L}$ and $f_i \in \mathcal{M}$.

Let $\mathcal{M} = \left\{ \sum_{i=1}^{n} E_i X f_i : n \in \mathbb{N}, E_i \in \mathcal{L} \text{ and } f_i \in \mathcal{M} \right\}$. Then \mathcal{M} is a linear manifold.

Define $A : \mathcal{M} \rightarrow \mathcal{M}$ by $A(\sum_{i=1}^{n} E_i X f_i) = \sum_{i=1}^{n} E_i Y f_i$. Then A is well-defined by (\ast). Extend A to $\overline{\mathcal{M}}$ by continuity. Define $A|_{\overline{\mathcal{M}}^{-}} = 0$. Then $\|A\| \leq 1$ and $AX = Y$. $AE(\sum_{i=1}^{n} E_i X f_i) = A(\sum_{i=1}^{n} EE_i X f_i) = \sum_{i=1}^{n} EE_i E_Y f_i$ and $EA(\sum_{i=1}^{n} E_i X f_i) = E(\sum_{i=1}^{n} E_i Y f_i) = \sum_{i=1}^{n} EE_i E_Y f_i$. And $EA(g) = E(0) = 0$ and $AE(g) = 0$ for g in $\overline{\mathcal{M}}^{-}$ since $\langle Eg, \sum_{i=1}^{n} E_i X f_i \rangle = \langle g, \sum_{i=1}^{n} EE_i X f_i \rangle = 0$. Hence every E in L reduces A. Therefore, A is a diagonal operator. Let $A = (a_{ii})$. Since $AX = Y$, $y_{ij} = a_{ii} x_{ij}$ for all i and all j. Since $\bar{x}_{i,\sigma(i)} y_{i,\sigma(i)}$ is real for all $i = 1, 2, \ldots$, A is a self-adjoint operator. \qed
THEOREM 2. Let $X_p = (x_{ij}^{(p)})$ and $Y_p = (y_{ij}^{(p)})$ be operators in $B(ℋ)$ $(p = 1, 2, \ldots, n)$ such that $x_{ij}^{(q)} \neq 0$ for some q. Then the following statements are equivalent.

(1) There exists an operator A in $\text{Alg} ℋ$ such that $AX_p = Y_p$ $(p = 1, 2, \ldots, n)$, every E in $ℒ$ reduces A and A is a self-adjoint operator.

(2) $\sup \left\{ \frac{\| \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} Y_i f_{k,i} \|}{\| \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} X_i f_{k,i} \|} : \ m_i \in ℤ, l \leq n, E_{k,i} \in ℒ \text{ and } f_{k,i} \in ℋ \right\} < \infty$ and $x_{i,\sigma(i)}^{(q)}, y_{i,\sigma(i)}^{(q)}$ is real for all $i = 1, 2, \ldots$.

Proof. We assume the condition (2) holds. Then, without loss of generality, we may assume that $\sup \left\{ \frac{\| \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} Y_i f_{k,i} \|}{\| \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} X_i f_{k,i} \|} : l \leq n, m_i \in ℤ, E_{k,i} \in ℒ \text{ and } f_{k,i} \in ℋ \right\} = 1$.

Then $\| \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} Y_i f_{k,i} \| \leq \| \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} X_i f_{k,i} \| \cdots \cdots (\ast)$. Let $ℳ = \left\{ \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} X_i f_{k,i} : l \leq n, m_i \in ℤ, E_{k,i} \in ℒ \text{ and } f_{k,i} \in ℋ \right\}$.

Then $ℳ$ is a linear manifold. Define $A : ℳ \rightarrow ℋ$ by $A(\sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} X_i f_{k,i}) = \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} Y_i f_{k,i}$. Then A is well-defined by (\ast). Extend A to $ℳ$ by continuity. Define $A|_{ℳ^{-1}} = 0$. Clearly $AX_p = Y_p$ and we know that $\| A|ℳ \| \leq 1$ $(p = 1, 2, \ldots, n)$. For $m_i \in ℤ, l \leq n, E_{k,i} \in ℒ$ and $f_{k,i} \in ℋ$,

$$AE\left(\sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} X_i f_{k,i} \right) = A\left(\sum_{i=1}^{l} \sum_{k=1}^{m_i} E E_{k,i} X_i f_{k,i} \right)$$

$$= \sum_{i=1}^{l} \sum_{k=1}^{m_i} E E_{k,i} Y_i f_{k,i},$$
\[EA \left(\sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} X_i f_{k,i} \right) = E \left(\sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} Y_i f_{k,i} \right) = \sum_{i=1}^{l} \sum_{k=1}^{m_i} E E_{k,i} Y_i f_{k,i}. \]

For every \(g \) in \(\mathfrak{M}^l \), \(EAg = E0 = 0 \) and \(AEg = 0 \) since \(\langle Eg, \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} X_i f_{k,i} \rangle = \langle g, \sum_{i=1}^{l} \sum_{k=1}^{m_i} E E_{k,i} X_i f_{k,i} \rangle = 0 \). So every \(E \) in \(\mathcal{L} \) reduces \(A \). Therefore, \(A \) is diagonal. Let \(A = (a_{ij}) \). Since \(AX_p = Y_p, y_{ij}^{(p)} = a_{ij} x_{ij}^{(p)} \) for all \(i, j \) and \(p = 1, 2, \ldots, n \). Since \(x_{i,\sigma(i)}^{(q)} \) is real for all \(i = 1, 2, \ldots, k \), \(A \) is a self-adjoint operator.

Conversely, if the condition (1) holds, then \(EAX_i = AX_i = EY_i \) for every \(E \) in \(\mathcal{L} (i = 1, 2, \ldots, n) \). So \(AX_i f = EY_i f \) for every \(E \) in \(\mathcal{L} \) and every \(f \) in \(\mathcal{H} (i = 1, 2, \ldots, n) \). Thus \(A(\sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} X_i f_{k,i}) = \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} Y_i f_{k,i} \), for \(m_i \in \mathbb{N}, l \leq n, E_{k,i} \in \mathcal{L} \) and \(f_{k,i} \in \mathcal{H} \). So

\[
\| \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} Y_i f_{k,i} \| \leq \| A(\sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} X_i f_{k,i}) \|
\leq \| A \| \| \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} X_i f_{k,i} \|.
\]

If \(\| \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} X_i f_{k,i} \| \neq 0 \), then \(\| \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} Y_i f_{k,i} \| \leq \| A \| \| \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} X_i f_{k,i} \|. \)

Hence, sup \(\left\{ \frac{\| \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} Y_i f_{k,i} \|}{\| \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} X_i f_{k,i} \|} : l \leq n, m_i \in \mathbb{N}, E_{k,i} \in \mathcal{L} \) and \(f_{k,i} \in \mathcal{H} \} \leq \| A \|. \)

Since every \(E \) in \(\mathcal{L} \) reduces \(A \), \(A \) is diagonal. Let \(A = (a_{ii}) \). Since \(AX_p = Y_p, y_{ij}^{(p)} = a_{ij} x_{ij}^{(p)} \) for all \(i, j \) and \(p \). Since \(A \) is a self-adjoint operator, \(x_{i,\sigma(i)}^{(q)} \) is real for all \(i = 1, 2, \ldots \).

Theorem 3. Let \(X_p = (x_{ij}^{(p)}) \) and \(Y_p = (y_{ij}^{(p)}) \) be in \(\mathcal{B}(\mathcal{H}) (p = 1, 2, \ldots) \) such that \(x_{i,\sigma(i)}^{(q)} \neq 0 \) for some fixed \(q \) and for all \(i \). Then the following statements are equivalent.
(1) There exists an operator A in AlgCl such that $AX_p = Y_p$ ($p = 1, 2, \cdots$), every E in \mathcal{L} reduces A and A is a self-adjoint operator.

$$
\sup \left\{ \frac{\| \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} Y_i f_{k,i} \|}{\| \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} X_i f_{k,i} \|} : m_i, l \in \mathbb{N}, E_{k,i} \in \mathcal{L} \text{ and } f_{k,i} \in \mathcal{H} \right\}
$$

$< \infty$ and $x^{(q)}_{i,a(i)} y^{(q)}_{i,a(i)}$ is real for all $i = 1, 2, \cdots$.

Proof. If $\sup \left\{ \frac{\| \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} Y_i f_{k,i} \|}{\| \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} X_i f_{k,i} \|} : l, m_i \in \mathbb{N}, E_{k,i} \in \mathcal{L} \text{ and } f_{k,i} \in \mathcal{H} \right\} < \infty$, then without loss of generality, we may assume that

$$
\sup \left\{ \frac{\| \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} Y_i f_{k,i} \|}{\| \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} X_i f_{k,i} \|} : l, m_i \in \mathbb{N}, E_{k,i} \in \mathcal{L} \text{ and } f_{k,i} \in \mathcal{H} \right\} = 1.
$$

So $\sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} Y_i f_{k,i} \leq \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} X_i f_{k,i} \cdots \cdots (\ast)$. Let $\mathcal{M} = \left\{ \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} X_i f_{k,i} : l, m_i \in \mathbb{N}, E_{k,i} \in \mathcal{L} \text{ and } f_{k,i} \in \mathcal{H} \right\}$.

Then \mathcal{M} is a linear manifold. Define $A : \mathcal{M} \to \mathcal{H}$ by $A(\sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} X_i f_{k,i}) = \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} Y_i f_{k,i}$. Then A is well-defined by (\ast). Extend A to $\overline{\mathcal{M}}$ by continuity. Define $A|_{\mathcal{M}} = 0$. Clearly $AX_p = Y_p$ and we know that $\|A|\mathcal{M}\| \leq 1$ ($p = 1, 2, \cdots$).

$$
AE\left(\sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} X_i f_{k,i} \right) = A\left(\sum_{i=1}^{l} \sum_{k=1}^{m_i} E E_{k,i} X_i f_{k,i} \right) = \sum_{i=1}^{l} \sum_{k=1}^{m_i} E E_{k,i} Y_i f_{k,i}
$$

and

$$
EA\left(\sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} X_i f_{k,i} \right) = E\left(\sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} Y_i f_{k,i} \right) = \sum_{i=1}^{l} \sum_{k=1}^{m_i} E E_{k,i} Y_i f_{k,i}.
$$
For every g in \mathcal{M}^1, $EA(g) = E(0) = 0$ and $AE(g) = 0$ since

$$\langle Eg, \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} X_i f_{k,i} \rangle = \langle g, \sum_{i=1}^{l} \sum_{k=1}^{m_i} EE_{k,i} X_i f_{k,i} \rangle = 0.$$

So every E in \mathcal{L} reduces A. Therefore, A is diagonal. Let $A = (a_{ii})$. Since $AX_p = Y_p$, $y_{ij}^{(p)} = a_{ii} x_{ij}^{(p)}$ for all i, j, and $p = 1, 2, \cdots$. Since $x_{ij}^{(q)} y_{ij}^{(q)}$ is real for all $i = 1, 2, \cdots$, A is a self-adjoint operator.

Conversely, if $AX_i = Y_i$, then $EA X_i = EA X_i = EY_i$ for every E in \mathcal{L} ($i = 1, 2, \cdots$). So $AEX_i f = EY_i f$ for every E in \mathcal{L} and every f in \mathcal{H} ($i = 1, 2, \cdots$). Thus $A(\sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} X_i f_{k,i}) = \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} x_{ij}^{(p)} Y_i f_{k,i}$, $m_i, l \in \mathbb{N}$, $E_{k,i} \in \mathcal{L}$ and $f_{k,i} \in \mathcal{H}$. So

$$\left\| \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} X_i f_{k,i} \right\| \leq \left\| A(\sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} X_i f_{k,i}) \right\|$$

$$\leq \left\| A \right\| \left\| \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} X_i f_{k,i} \right\|.$$

If $\sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} X_i f_{k,i} \neq 0$, then

$$\frac{\left\| \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} X_i f_{k,i} \right\|}{\left\| \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} X_i f_{k,i} \right\|} \leq \left\| A \right\|.$$

Hence

$$\left\{ \frac{\left\| \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} Y_i f_{k,i} \right\|}{\left\| \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} X_i f_{k,i} \right\|} : l, m_i \in \mathbb{N}, E_{k,i} \in \mathcal{L} \text{ and } f_{k,i} \in \mathcal{H} \right\} \leq \left\| A \right\|.$$

Since every E in \mathcal{L} reduces A, A is diagonal. Let $A = (a_{ii})$. Since $AX_p = Y_p$, $y_{ij}^{(p)} = a_{ii} x_{ij}^{(p)}$ for all p, i, and j. Since A is a self-adjoint operator, $x_{ij}^{(q)} y_{ij}^{(q)}$ is real for all $i = 1, 2, \cdots$. \qed

References

JOO HO KANG, DEPARTMENT OF MATHEMATICS, TAEGU UNIVERSITY, TAEGU 713-714, KOREA
E-mail: jh kang@biho.taegu.ac.kr

YOUNG SOO JO, DEPARTMENT OF MATHEMATICS, KEIMYUNG UNIVERSITY, TAEGU 704-701, KOREA
E-mail: ysjo@kmucc.keimyung.ac.kr