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SELF-ADJOINT INTERPOLATION FOR
OPERATORS IN TRIDIAGONAL ALGEBRAS

Joo Ho KANG AND YOUNG S00 Jo

ABSTRACT. Given operators X and Y acting on a Hilbert space
‘H, an interpolating operator is a bounded operator A such that
AX =Y. An interpolating operator for n-operators satisfies the
equation AX; =Y; fori=1,2,--- ,n. In this article, we obtained
the following : Let X = (z;;) and Y = (y;;) be operators in B(H)
such that z;,(;)y # 0 for all i. Then the following statements are
equivalent.

(1) There exists an operator A in Algl such that AX =Y,
every E in L reduces A and A is a self-adjoint operator.
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1. Introduction

Let C be a collection of operators acting on a Hilbert space H and
let X and Y be operators acting on H. An interpolation question for
C asks for which X and Y is there a bounded operator T in C such
that TX = Y. A variation, the ‘n-operator interpolation problem’,
asks for an operator T such that TX; = Y; for fixed finite collections
{Xl,XQ’ e 7X’n} and {Y17}/é7 e 7Yn}-

In this article, we investigate self-adjoint interpolation problems in
tridiagonal algebras: Given operators X and Y acting on a Hilbert space
‘H, when does there exists a self-adjoint operator A in a tridiagonal
algebra such that AX =Y7
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First, we establish some notations and conventions. A commutative
subspace lattice £, or CSL L is a strongly closed lattice of pairwise-
commuting projections acting on a Hilbert space H. We assume that
the projections 0 and I lie in £. We usually identify projections and
their ranges, so that it makes sense to speak of an operator as leaving
a projection invariant. If £ is CSL, AlgL is called a CSL-algebra. The
symbol AlgCl is the algebra of all bounded linear operators on H that
leave invariant all the projections in £. Let N be the set of all natural
numbers and let C be the set of all complex numbers. Let z € C. Then
Z means the complex conjugate of z.

2. Results

Let ‘H be a separable complex Hilbert space with a fixed orthonormal
basis {e1, ez, - }. Let ©1,22,- - , 2, be vectors in H. Then [z, 22, - ,
z,| means the closed subspace generated by the vectors z1, o, - , .
Let M be a subset of a Hilbert space H. Then M means the closure of M
and M the orthogonal complement of M. Let £ be a subspace lattice
of orthogonal projections generated by the subspaces [e2x—1], [e26—1, €2k,
eak+1] (K = 1,2,---). Then the algebra Algl is called a tridiagonal
algebra which was introduced by F. Gilfeather and D. Larson [3]. These
algebras have been found to be useful counterexamples to a number of
plausible conjectures. Recently, such algebras have been found to be use
in physics, in electrical engineering and in general system theory.

Let A be the algebra consisting of all bounded operators acting on H
of the form

* *
*

L . S 3

*

*

with respect to the orthonormal basis {e1, €2, - - - }, where all non-starred
entries are zero. It is easy to see that AlgL=A. Let D={A : A is diagonal
in B(H) }. Then D is a masa of Algl and D=(AlgL)N (AlgL)*, where
(Algl)* = {A*: A e€Algl}.

In this paper, we use the convention % = 0, when necessary.

From now, let ¢ : N — N be a mapping in this paper.
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THEOREM 1. Let X = (z;;) andY = (y;;) be operators in B(H) such
that x;,(;) # 0 for all i. Then the following statements are equivalent.

(1) There exists an operator A in AlgC such that AX =Y, every E
in L reduces A and A is a self-adjoint operator.

(2) sup { IS BXA

Tio())Yi,o(i) is real for all 1 = 1,2, -.

neN,EiEEandfieH} < oo and

Proof. (1) = (2) : Since E reduces A and AX =Y, AEX =
EY for every E in L. So A(Y, ; E:Xfi) = >, E;Y f; and hence
IS EYR < AN, EXfil,neN, E; € Land f; € H. If

. IS, EY £
| > ie B X fill # 0, then —=——"77 < I14]l.

! || Zi:l Ezsz”

| BY Al
1251 B X il
every E in £ reduces A, A is a diagonal operator. Let A = (a;;). Since
AX =Y, yi; = auxy for all ¢ and all j. Since A is a self-adjoint
operator, T; 5(;)¥i,o(;) is real for all i =1,2,---.

" BYF,
2) = (1) : Ifsup{”—%z%—}ﬂ:newmecandﬁeﬂ} <
i=1 i3> Ji

00, then without loss of generality, we may assume that

Hence sup{ neN, E, €L, and f; € H}; < 00. Since

12 ic BY fill
SUp ————-:neNFE; € Land f; e Hy =1. So,
{ 122 B X fil]

I3 i EY fill < | i EsXfil,neN, E;e Land fy e H - ().

=1

Let M = {ZEini nmeN,E; € Land f; € ’H}. Then M is a linear
manifold.

Define A : M — H by A" E;Xfi) =Y. EYfi. Then A is
well-defined by (). Extend A to M by continuity. Define Al =0.
Then [|[A| <1land AX =Y. AEX ., EiXfi) = A EEXf;) =
> i BEY fiand EAGYC, EX fi)=E(_ BiY fi) = 3i_, EEY f;.
And EA(g) = E(0) = 0 and AE(g) = 0 for g in M since (Eg,
Sr i EXf) = (9,5 EE;Xf;) = 0. Hence every E in L reduces
A. Therefore, A is a diagonal operator. Let A = (a;;). Since AX =Y,
Yi; = ;%5 for all 2 and all j. Since ZT; ;()¥;,0(;) isreal forall¢ = 1,2, .- -,
A is a self-adjoint operator. 0



426 Joo Ho Kang and Young Soo Jo

THEOREM 2. Let X, = (z (p)) and Y, = (y,g’)) be operators in B(H)
(p=1,2,--- ,n) such that :cz(.g)(i) # 0 for some q. Then the following
statements are equivalent.

(1) There exists an operator A in AlgL such that AX, =Y, (p =
1,2,---,n), every E in L reduces A and A is a self-adjoint operator.

EL:Yifrq
(2) sup ”ZZ 1 ’“ - BiaYifed) m; € Nl < n,Ey,; € L and fi;
”Zz 1 2sk= 1Ek X fk z”

€ ’H} < oo and xiqg(l)yz(qg(z) is real for all i = 1,2, -

Proof. We assume the condition (2) holds. Then, without loss of
generality, we may

“Ez 1Ek L EriYifeall
”Zz 1 Yoy BriX szll

assume that sup{
and fr;€H

Then HZ; 1 2uk= 1Eszle”<“Z =1 2uk= 1Ek1kaz|| """ (*)

I my
Let M = {ZZEk,iXifk,i :l<n,m; e NJEg, € L and fi; € ’H}.

=1 k=1

Then M is a linear manifold. Define A : M — H by A(S\_, Y1, Ex,
Xifii) = 21:1 S ExiYifr,:. Then A is well-defined by (). Extend
A to M by continuity. Define A|m—¢ = 0. Clearly AX, =Y, and we
know that ||[Alm|| <1 (p=1,2,---,n). Form; €N, I <n, Ey; €L
and fi; € H,

M-~
M]3
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A ( i i Ek,iXifk,i) =FE < i i Emﬁfm)

i=1 k=1 i=1 k=1

I my
=Y > EEyYifx.

i=1 k=1

For every g in ﬂ’L, EAg=FE0=0 and AEg=0 since (Eg, ZZ DN
EviXifri) = (g, Zé:le:l EE;Xifr;) =0. So every E in L reduces
A. Therefore, A is diagonal. Let A = (a;). Since AX, = Y,, yz(f) =

aiix%’) for all 7, 7, and p = 1,2,--- ,n. Since xqu(Z)yfqg(z) is real for all

1=1,2,---, A is a self-adjoint operator.

Conversely, if the condition (1) holds, then FAX; = AEX; = EY;
for every E'in £ (i =1,2,--- ,n). So AEX;f = EY,f for every F in L
and every fin H (¢ = 1,2,--- ,n). Thus A(ZZ Lot Bk i Xifri) =
S S E;“Yf;”,forszN [<n, E;“EEandf;HE’H So

I m, I my

i=1 k=1 i=1 k=1

l my
< |14l ZZEk,iXifk,iH-

i=1 k=1

“Z 1 k 1Eszfk’L“
If E ,LX i 0 th 2
5751 o0 BeiXafuall # en I S B X fll

< | All

||Zz 1 k: 1Eszsz“
“21_1 k= 1Ek1X kaH

fri € H} < |l All-

<n,m; €N, Ek,i € L and

Hence, sup {

Since every E in L reduces A, A is diagonal. Let A = (a;;). Since
AX, =Y, y(p) = amm(p) for all 4, , and p. Since A is a self-adjoint
operator, xgqg(z)yz(qg(z) isreal forall4=1,2,..-. O

THEOREM 3. Let X, = (z{¥) and Y, = (yg’)) be in B(H) (p =

ij
1,2,---) such that xz(Q)() # 0 for some fixed q and for all i. Then the

following statements are equivalent.
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(1) There exists an operator A in AlgL such that AX, =Y, (p =
1,2,--+), every E in L reduces A and A is a self-adjoint operator.

Ey ;Y fr;
2)s p{“Zz 1 k Yy BriYifr, “ i,lGN,Ek,iE,Candfk,iEH}
”Zz 1 k= 1EIC7,ka1“

< 0o and xgqg(z)yfqg(z) isreal for alli=1,2,---.

Ey Y,
Proof. If sup{”E 1 ’f - BrYifid :I,m; € N, Ep; € £ and
”Zz 1 Lak= 1Ek iXi sz“

fri € Hp < 0o, then without loss of generality, we may assume that

Ey;Yifis
up{”Zz 1 k 4 EyiYifeill l,mieN,Ek’iEEandfk,iEH}:1
”Ez 1 2okt B i X frl

S0 (| ioy Xy B Yafeall < | Sicy ety B Xafwll - (%)

i=1 k=1

I my
Let M = {ZZEk,iXifk,i :I,m; €N,Ey; € L and fi; € H}.

Then M is a hnear mamfold Define A: M — H by A(ZZ 1w By
Xifii) =S, S0, EyiYifri Then A is well-defined by (*). Extend

A to M by continuity. Define A'Hl = 0. Clearly AX, =Y, and we
know that ||[A|lm] <1 (p=1,2,---).

I my m;
AE(Z > Ek,iXifk,i> = A( > > BEwXifs, )

=1 k=1 i=1 k=1
l my
= Z E k szk: i
i=1 k=1
and
1 m; l my
A(EXBxisi) =5( LY Yifis)
i=1 k=1 i=1 k=1
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For every g in ML, EA(g) = E(0) =0 and AE(g) = 0 since

l

I m,
Egv Z Z Ek zX flc i (g, Z Z EEk,iXifk,i> =0.

i=1 k=1 i=1 k=1

So every E in L reduces A. Therefore, A is diagonal. Let A = (ay;).

Since AX, = Y, yg’) = aua:(p) for all 4, j, and p = 1,2,---. Since
qu(z)yf?(” isreal for all i = 1,2,---, A is a self-adjoint operator.

Conversely, if AX; =Y, then EAX,;, = AEX; = EY; for every FE in
L(i=1,2,---). So AEX,f = EYf for every E in L and every fin H

(1=1,2,--+). ThusA(Z:Z 12 B i X fr) = Zi—1 w1 B it fris
m;,l €N, Ex; € L and fi; € H. So

I my I my
IS EeiYife < |AQC Y. BraXifid)|

i=1 k=1 =1 k=1

I my
<A BeiXifel.

=1 k=1

EriYifri
16 3L ST, BsXofeall 0, then L 2oim Sko Bea¥ifil
I|Zz 1 k= lEk'Lkaz”

< [lAfl.

I, k= oot BriYifuall
||Ez 1 Luk= 1Ekzkaz”

Hence sup{ slhym; € Ny Ep; € £ and fy; €

H} < || All.

Since every E in L reduces A, A is diagonal. Let A = (ay). Since
AX, =Y, y(p) = aiiwg’) for all p, 4, and j. Since A is a self-adjoint

operator, £, y{? s real for alli =1,2,--. O
1,0(1)7%,0(1)
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