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REMARKS ON HIGHER TYPE
ADJUNCTION INEQUALITIES OF
4-MANIFOLDS OF NON-SIMPLE TYPE

Jin-HonG KIM

ABSTRACT. Recently P. Ozsvath and Z. Szabé proved higher type
adjunction inequalities for embedded surfaces in 4-manifolds of non-
simple type. The aim of this short paper is to give a simple and
direct proof of such higher type adjunction inequalities for smoothly
embedded surfaces with negative self-intersection number in smooth
4-manifolds of non-simple type. This will be achieved through a re-
lation between the Seiberg-Witten invariants used to get adjunction
inequalities of 4-manifolds of simple type and a blow-up formula.

1. Introduction

N. Seiberg and E. Witten introduced the Seiberg-Witten invariants
for 4-manifolds. They are differential-topological invariants for 4-mani-
folds. Kronheimer and Mrowka [2] and Morgan, Szabé, and Taubes (3]
proved the Thom conjecture for curves with non-negative self-intersection
number in any symplectic 4-manifold. Recently, Ozsvath and Szabé
completed the Thom conjecture in its full generality by proving the con-
jecture for curves with negative self-intersection number [4]. Their proof
is based on a new relation among the Seiberg-Witten invariants. As a
consequence, they proved a generalized adjunction inequality for neg-
ative self-intersection number on a smooth 4-manifold of simple type.
Moreover, using the refinement of their relation between the Seiberg-
Witten invariants they proved higher type adjunction inequalities for
smoothly embedded surfaces in 4-manifolds of non-simple type [5]. It is
a well known conjecture [6] that any smooth 4-manifold with b3 (X) > 1
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and b;(X) = 0 cannot admit basic classes of non-zero dimension. How-
ever, in this paper we do not require that b;(X) be zero, and there exist
some examples of 4-manifolds with b3 (X) > 1 and b;(X) > 0 which
admit basic classes of non-zero dimension (see [5] or Section 3).

The aim of this short paper is to give a simple and direct proof of such
higher type adjunction inequalities for smoothly embedded surfaces with
negative self-intersection number in smooth 4-manifolds of non-simple
type. These adjunction inequalities can also be obtained from Theorem
1.6 in [5] that is a consequence of more general and difficult results.
The main idea of this paper is to use just the relation of P. Ozsvéith
and Z. Szabé in [4] between the Seiberg-Witten invariants and the blow-
up formula in [1]. In view of our results of this paper we speculate
that we can deduce any higher type adjunction inequalities only from
some relations used to get adjunction inequalities of 4-manifold of simple
type and a blow-up formula, contrary to the approach of [5]. Similar
adjunction inequalities for immersed 2-spheres were already proved by
R. Fintushel and R. Stern in [1].

To state our main results, we need some notations (see Section 2 for
more details). Let Mx (L) denote the Seiberg-Witten moduli space for
a spin® structure L, and d(L) denote its virtual dimension. A Seiberg-
Witten basic class is a spin® structure L for which the Seiberg-Witten
invariant does not vanish identically, and a smooth 4-manifold is of
Seiberg- Witten type 2m if the Seiberg-Witten invariants vanish for all
spin® structures L with d(L) > 2m. In particular, if a smooth 4-manifold
X is of type 0, then X is called of simple type. Moreover, if bJ (X) = 1,
then we say that X is of type 2m for a common chamber for the set C
of all spin® structure L with d(L) > 0.

Now, we are in a position to state our main result. Our main result
is Theorem 3.3, and one special case that is particularly interesting is
the following

THEOREM 1.1. Let X be a closed, connected, oriented, smooth 4-
manifold of the Seiberg-Witten 2d type with b5 (X) > 1 and £ C X be
a smoothly embedded, oriented, closed surface with genus g(¥) > 0 and
3.3 < 0. Let L be a Seiberg-Witten basic class with the Seiberg-Witten

. . dim My (L) . . . :
invariant SWx (x— 2 ) # 0, where z is a 2-dimensional generator.

If either g(¥) > d or |{L, [Z])| + [£] - [£] > 0, then we have
(1.1) (L, [Z)|+Z-E+2d <29(X) — 2.

Moreover, ifb3 (X) = 1, then the inequality still holds in the common
chambers for C; which are perpendicular to [%].
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We organize this paper as follows. In Section 2, we set up some basic
notations. The main results will be stated and proved in Section 3.
Finally, in Section 4 we give two examples which show that our main
results are in fact sharp.

2. Preliminaries

In this section, we will set up some notations for the next section.
Let X be a closed, oriented, smooth 4-manifold with b3 (X) > 0. We
let x to be a two-dimensional generator. Let A(X) denote the graded
algebra of the tensor product of the exterior algebra on H;(X,Z) with
the polynomial algebra Z[z| on a single two-dimensional generator z,
ie.,

A(X) =Z[z] ® A*H 1 (X).

Given an orientation for H(X,R) ® HZ (X,R) with a spin® structure

L, the Seiberg-Witten invariant form an integer-valued function

SWx,: A(X) — Z.

Given a spin® structure L over X, the Seiberg-Witten equations are for
a connection A on det(W,) and a section ® € I'(W,.)

(2.1) p(Fif+in)=(2®®*)y and Pad =0,

where p denotes the isomorphism from iA™ to isu(W, ), P denotes the
Dirac operator, and 7 denotes some fixed real self-dual 2-form.

Let Mx (L) denote the moduli space of solutions to the equations
(2.1) modulo gauge group. Then the virtual dimension of the moduli
space is given by
L? — (2x(X) + 30(X))

4 b
where x(X) and o(X) denote the Euler characteristic and the signature

of X, respectively. Let £ denote the universal line bundle over X x
Mx (L) and

d(L) =

piAX) — H*(Mx(L),Z), A~ c1(L)/A
for any X\ € H,(X,Z).
Then, the Seiberg-Witten invariant is defined to be
SWx r(a) = (u(a), [Mx (L)]),

where [Mx (L)] denotes the fundamental class for the moduli space in-
duced from the homology orientation of H'(X,Z) ® H2(X,Z).
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The Seiberg-Witten invariant is a smooth invariant of the 4-manifold
X when b} (X) > 1. When b3 (X) = 1, the invariant depends on the
chamber structure. Here, we briefly review some basic terminologies (see
[5] for details). Let

Q(X) = {a € H¥(X,R) | o = 1}.

Given an orientation of H2 (X, R), we can choose the positive componént
Q7 (X) of two components of Q(X). For a spin® structure L on X, we
define the wall determined by L, denoted W, to be the set of (w,t) €
Q+(X) x R such that 2mw - L + ¢ = 0, and the chamber determined by
L is a connected component of 2+ (X) x R — W,. We can also define
so-called a period map from the space of metrics and perturbations to
the space Q7 (X) x R given by (g,7) — (wg, [y wg A7), Where wy is
the unique harmonic, self-dual two-form in Q*(X). It is well known
that the Seiberg-Witten invariant of L for g and 7 is well defined if the
corresponding period point does not lie on a wall, and that it depends
on g and 7 if the period point varies in the chamber.

To state our main results for b5 (X) = 1, we need to define a common
chamber for a collection C of spin® structures. This is defined to be
a connected component of QF(X) x R — UrecWr, and we say that a
common chamber for C is perpendicular to ¢ € H?(X,R) of negative
square if it contains a pair (w,t), where w is perpendicular to c.

Finally, we need one more notation. Let ¥ C X be a smoothly
embedded, oriented, closed surface. We define the class £(X) € A(X) by
£(T) = [1-,(z — a; - b;), where {a;,b;} are the images in H;(X,Z) of a
standard symplectic basis for H;(X,Z), and the product a; - b; is taken
in the algebra A(X). :

Now, we state two important theorems of P. Ozsvath and Z. Szabé
and R. Fintushel and R. Stern. We denote by [%] the Poincaré dual of
a smoothly embedded, oriented, closed surface Z.

THEOREM 2.1 ([4]). Let X be a closed, smooth 4-manifold with
b3(X) > 1 and ¥ C X a smoothly embedded, oriented, closed sur-
face of genus g(¥) > 0 and ¥ - X = —n < 0. Then, for each spin®
structure L with d(L) > 0 and |(L, [X])| > 29(X) + n, we have for each
a € A(X)

SWx, Lyaers) (§(eX)™ - a) = SWx 1(a),

where € = *1 is the sign of (L,[X]) and 2m = |(L, [Z])| — 29(Z) — n.
Moreover, if b;r (X) = 1, then the relation 5till holds in any common
chamber for L and L + 2¢[X] which is perpendicular to [X].
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Next, we state the blow-up formula of R. Fintushel and R. Stern.

THEOREM 2.2 ([1]). Let X be a smooth, closed 4-manifold, and
let X = X #@2 denote its blow-up, with an exceptional class E €
H?(X,R). Then, for each spin® structure L on X with d(L) > 0, and
each a € A(X) = A(X), we have SWx i(a) = SWx,r(z%), where L is
the spin® structure on X obtained by restricting X and 2q = d(L)—d(L).
Moreover, if b (X) = 1, then the relation still holds for any common
chamber perpendicular to E.

3. Main resultv

In this section, we will prove a generalized adjunction inequality for
smoothly embedded surfaces with negative self-intersection number. We
first start with the following relation between the Seiberg-Witten invari-
ants. This is a refinement of Theorem 2.1.

LEMMA 3.1. Let X be a closed, smooth 4-manifold with b3 (X) > 1
and ¥ C X a smoothly embedded, oriented, closed surface of genus
g(X) >0 and ¥-X = —n < 0. Let L be a spin® structure with
dim Mx (L) = Y7 ;l;i(l; + 1) with each integer l; > 0. Suppose that
(L, [Z])| > 2¢9(2)—X-2—2>7_, ;. Then, the following relation holds:

dim My (L)

SWx Ly2e[z)(E(€D)2™P) = SWx (z— 2 ),
where € = £1 is the sign of (L,[%]), 2p=3%_7_; l;(l; — 1), and

T
om = [(L,[T])] - 29(Z) +Z-T+2) L.
i=1
Moreover, if b3 (X) = 1, then the relation still holds in any common
chamber for L and L + 2¢[X] which is perpendicular to [X].

REMARK 3.2. P. Ozsvath and Z. Szabé proved a similar relation (The-
orem 1.6 in [5]) with an extra condition —(L, [Z]) + [X] - [£] > 0 with
d(L) in place of >, l;.

Proof. Let | be a positive number greater than r. We first blow up
our manifold X [ times to get a new manifold X = X#ICP?. Assume
without loss of generality that the sign of (L, [X]) is positive, i.e., € =
1. Let & be the proper transform of ¥ so that we get an embedded
submanifold of the same genus with [¥] = [£] — E; — ... — E,, where
E; (1 < i < [) are the exceptional divisors. Now consider the spin®
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structure L on X which extends L on X such that L = L + iy (20 +
1)E;+E-+1+ ...+ E;. Then, we get

(3.1)
4-d(L) = L* — 2x(X) + 30(X))

= (L+ i(% + DEi+Erp1+ ...+ E)?— 2x(X) + 30(X) - 1)
=1
= (L% — (2x(X) + 30(X))) — ; QL+1)2—(1—7r)+1
i=1

=4-d(L)-4Y L +1)>0.
=1

Note also that
(3.2)
l<i7 [ED} = )L + Z(le + 1)Ez + B +...+ Ej,

i=1

([2] - (El + ... “"Er)),
=|[(LEN+Y QL +1) 229(2) +n -2 L+ (2 +1)
=1 i=1 i=1

>29(2) +n+r=29(5) + (n+7).

Finally, note that

T T
(33) X.Z= (Z—ZE,-) - <§]—ZE2~) =% Y—r=—(n+r).
1=1 =1
From (3. 1), (3.2), and (3.3), we can apply Theorem 2.1 to our 4-manifold
X with L and X to obtain a relation
(3.4) SW iros(E(3)2™ - a) = SWy 1 (a),
where 2m = (L, [£]) —2¢(Z) — (n+7). Here, we used (L, [£]) = (L, [E])+

e (2L +1).
On the other hand, since

E+2[i]X=L+2[E] and EX=L,
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and
4d(L + 2[8)) — 4d(L + 2[X)]) = (L + 2[Z])? — 2x(X) + 30(X))
— (L +2[E])? + (2x(X) + 30(X) - 1)

T
=) @i+1)?+(1-r)- 221-1—1 )+ 4r —1
=1

T
=4 Ll —1) =8p,
=1

it follows from the blow-up formula Theorem 2.2 and (3.1) that we have

SW 1oy (E(D)2™ - @) = SWi 1 4o15)(§()a™*P - a)

(3-5) dim M x (L)
SWX’,E(G‘) = SWX’L(iL' 2 . a).

Since the Seiberg-Witten invariants are zero on homogeneous elements
whose degree is not d(L), combining equations (3.4) and (3.5) together
completes the proof. If b (X) = 1, then a common chamber for L and
L + 2[%] which is perpendicular to [¥] yields a common chamber for L
and L + 2[%] which is perpendicular to [Z]. Thus, the above arguments
work to give the relation for such a common chamber. [l

Now, we are in a position to state and prove a generalized adjunction
inequality for 4-manifolds of non-simple type.

THEOREM 3.3. Let X be a closed, connected, oriented, 4-manifold
of the Seiberg-Witten Y \_, l;(l; + 1) type with b5 (X) > 1 and ¥ C X
be a smoothly embedded, oriented, closed surface with genus g(¥) > 0
and Y- X < 0. Let L be a Seiberg-Witten basic class with the Seiberg-

Witten invariant SWx 1(z M) # 0. If either g(X) > Y7 _,1; or
(L, [Z)] + [Z] - [£] > 0, then we have
(3.6) (L EN+2-S+2) L <29(T) -2

i=1

Moreover, if b (X) = 1, then the inequality still holds in the common
chambers for C,. which are perpendicular to [X].

Proof. We prove this by contradiction. It suffices to prove the first
case. Suppose that g(X) > >°7_,; and that there is a basic class L

dlmMK( )
with SWx r(x ) # 0 for which the adjunction inequality does
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not hold. Then, Lemma 3.1 implies that L + 2¢[%] is also a basic class.
Moreover, we have

d(L+2¢[X]) =d(L) +&(L,[Z]) + X - &
> L+ 1)+ 2(9() = D L) > d(L).
i=1 i=1
But, this implies that X is not of the Seiberg-Witten type >, Li(l;+1),
which completes the proof of the first case. O

Now, we prove Theorem 1.1.

Proof of Theorem 1.1. To get the inequality (1.1), it suffices to take
r=dandly =...=13 =1 in Theorem 3.3. O

Finally, we close this section with a simple algebraic fact which tells
that the lower bound of the inequality (1.1) in Theorem 1.1 is the best
possible.

LEMMA 34. Let £, = {(l1,...,l;) € N | 320_, Li(l; + 1) = 2d} for
a positive integer d, and let £ = U22,L,. Define a function ¢ : L —
N, (l1,...,8) — >i_1 li. Then, the function ¢ attains its maximum d
at (lh,...,lg) =(1,...,1).

Proof. Let k; be a positive integer such that 2k; = [;(I; + 1) for each
i=1,...,7. Note that r < d. It is also easy to see that [; < k; for all
i=1,...,r. In fact, otherwise for ¢ = 1,...,7 we have 2k; = [;(l; +1) >
ki(k; +1) > 2k;, which is a contradiction. Thus, we have ‘

(3.7) zr:li < Zr:kz =d, ‘
=1 =1

and, moreover, since I; < k; for all ¢ = 1,...,r the equality (3.7) holds
ifand only if r =d and k; =; forall ¢ = 1,...,r, namely, r = d and
ki=1l,=1foralli=1,...,r. This completes the proof. O

4. Examples

In this section, we give two examples which show that our main results

dim My (L)
are sharp. First, we will show that the condition SWx r(x™ 2 )#£0

is crucial and so cannot be removed from Theorem 3.3.
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ExAMPLE 4.1. Fix a positive even number n greater than 2. We de-
note E(2n) by the simply connected elliptic fibration over CP!, without
multiple fibers and with its x(F(2n)) = 2n. Let X be the 4-manifold
E(2n)#2(53 x S). Let S and F denote a section and a fiber of the ellip-
tic fibration E(2n) such that S? = —2n. Let £ denote the symplectic
submanifold representing the homology class S + 5 F', and let T' denote
a fiber in the elliptic fibration of the first summand S x S1. Now, we
define ¥ to be the internal connected sum Xo#7. Then, we see that
gX)=%+1>1land ¥-X = —n.

Now, consider the spin® structure L over X induced from the canon-
ical spin® structure on E(2n). Then, it was shown in [5] that the spin®
structure L is a basic class of non-zero dimension dim Mx (L) = 2 =

"1 Li(l; + 1) such that SWx (b1 - b2) = 1, where b; € Hy(X,Z) gen-
erate Hy of the i-th copy of S3 x S!. Note also that since E(2n) is
of simple type and H*(X,Z) = H?(E(2n),Z), X must be of type 2.
Thus, in this case we can take > ._, l; = 1. On the other hand, since
(L, [Z]) = 2n — 2, we see that

(L, EN+S-S+2) L=2m—-2-n+2=n,
i=1
which equals 2¢(2) — 2 = 2(5 + 1) — 2. But, if we consider ¥y with the
induced spin® structure L on X then g(¥g) = § > 1, and the inequality
(3.6) does not hold.

We close this paper with another example which shows that the in-
equality (3.6) is in fact sharp because it is saturated by some examples
of 4-manifold which admit basic classes of non-zero dimension.

ExXAMPLE 4.2. Fix a positive integer n, and let Y be the 2-sphere
bundle over a Riemann surface ¥ of genus g(X) > 0, associated to
the circle bundle with Euler number n. Then, we have ¥ - ¥ = n.
In the common chamber corresponding to [¥], its anti-canonical line
bundle —Ky is a basic class of zero dimension. Let F be the class of
the fiber of Y. Then, it was shown [5] that SWy,_k, yod[F] (z%) # 0,
and (—Ky + 2d[F],[XZ]) = 2d for n > 2d. We assume without loss of
generality that Y is of the Seiberg-Witten type 2d.

Now, let X be the blown-up manifold Y #(n + d)@Q, and let 3 be
the proper transform of ¥ such that [X] = [Z] 4+ E) + ... + Epyq, where
E; (1 <1i < n+d) are exceptional divisors. Consider the spin® structure
Lon X such that L = —Ky +2d[F] + E1 + ...+ Eptq.
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Then, it is easy to see that
(L,[E]) =2d — (n+d) = —n+d
£ 8=%.-Z—(n+d)=-d<0.

Note also that since dim Mx (L) = 2d = S°i_, li(l; + 1), we can take
i1 li = d. Thus, we get

|(E,[2])|+f)~‘2+22l,~=n—d—d+2d=n:29(i)—2.
i=1
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