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CONVERGENCE THEOREMS AND STABILITY
PROBLEMS OF THE MODIFIED ISHIKAWA
ITERATIVE SEQUENCES FOR STRICTLY
SUCCESSIVELY HEMICONTRACTIVE MAPPINGS

ZeEQiNG Liu, Jong Kyu KM, aND K1 HonGg KiMm

ABSTRACT. The purpose of this paper is to introduce the con-
cept of a class of strictly successively hemicontractive mappings
and construct certain stable and almost stable iteration procedures
for the iterative approximation of fixed points for asymptotically
nonexpansive and strictly successively hemicontractive mappings
in Banach spaces.

1. Introduction

Let X be a Banach space, X* the dual space of X, (-, -) the dual pair
between X and X* and J : X — 2% the normalized duality mapping
defined by

J(z) = {f € X Relz, f) = |lelllfll, el = nfn}, reX.

F(T) and N stand for the set of fixed points of an operator T" and the
set of positive integers, respectively.

DEFINITION 1.1. Let K be a nonempty subset of a Banach space X
and T : K — K be an operator.
(i) T is said to be asymptotically nonexpansive 2| if 7™ is contin-
uous for some integer m € N and if

limsupsup{HT"w Tyl = llz—yll: =,y€ K}S 0;

n—o00
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(i) T is said to be strictly hemicontractive [3] if F(T) # 0 and if
there exists ¢ > 1 such that for all z € K and q € F(T), there
exists j(z — q) € J(z — ¢) satisfying

Re(Tz ~4,§(z — 0)) < 7llo — alf;

(iii) 7T is said to be strictly successively hemicontractive if F(T) # 0
and if there exist t > 1 and ng € N such that for any z € K and
q € F(T), there exists j(x — q) € J(z — q) satisfying

. 1
(1) ReTz-qj@-q) < llo—ql’, n2mno

Now we give two examples of selfmappings which are both asymptot-
ically nonexpansive and strictly successively hemicontractive, but not
continuous. Moreover, the mapping in Example 1.1 is strictly hemicon-
tractive and the mapping in Example 1.2 is neither strictly hemicontrac-
tive nor nonexpansive.

ExAMPLE 1.1. Let X = (—o00, 00) with the usual norm and a,, = 27"
for n > 0. Take K = [0,1] and define T : K — K by

(0, if z=0
1
Tx =4 . -1
ay, — T, if ze€ [§(an+1 + an),an)
. 1
T —any1, i z € [anta, §(an+1 +a,))

for all n > 0. Then F(T) = {0} and T is not continuous at z = 1. It is
easy to verify that

1
Tz < 3% 7 e K.
Therefore T? is continuous in K and T"K C [0,27"] for each n € N. It
follows that
limsupsup{||T"z —~ T"y|| — ||z — y|| : z,y € K} < limsup2™" = 0.
n—oo n—od

That is, T is asymptotically nonexpansive. Take { = 2 and ng = 1.
Then for any z € K, there exists j(z) € J(z) satisfying

1
Re(T"z,j(z)) =T "z -z < Za:2, n > ng.

That is, T is strictly successively hemicontractive and strictly hemicon-
tractive.
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EXAMPLE 1.2. Let X and {a,}5%, be as in Example 1.1. Take K =
[0,1) U {3} and define T': K — K by

(0, if ze{0,3}
3, if z=1
_ 1
Tz = ap — T, if ze€ [E(an_{_l +an),an)
. 1
L T — Qp+1, lf T € [an+1, —(an+1 + an))

2
for all n > 0. Clearly, F(T) = {0} and T is not continuous at z = 1.

Since ||[Tz —Ty|| =3 > 2 = |z —y| for z = 1 and y = 3, T is not
nonexpansive. Observe that

Re(Tx — T0,j(z —0)) =3 >

SR

= 2z~ 0]

for z = 1 and any ¢ > 1. Therefore, T is not strictly hemicontractive.
Note that T"z < stz for n > 2 and z € K and that T"K C [0,27"]
forn > 2. Set t = 4 and ng = 2. As in view of Example 1.1, we can
conclude that T is asymptotically nonexpansive and strictly successively
hemicontractive.

Let K be a nonempty subset of a Banach space X and T': K — K
be an operator. Assume that z9 € K and z,,.1 = f(T,z,) defines an
iterative scheme which produces a sequence {z,}>2, C K. Furthermore,
suppose that {z,}3 , converges strongly to ¢ € F(T) # 0. Let {y,}5%,
be any sequence in K and set €, = ||yn+1 — f(T, yn)||-

DEFINITION 1.2. (i) The iterative scheme {x,, }5° , defined by 41 =
f(T, z,,) is called T-stable on K if lim,, ., €, = 0 implies that lim,_,
Yn = 4;

(ii) The iterative scheme {z,}°2, defined by zp41 = f(T, 25) is said
to be almost T-stable on K if 3. €, < oo implies that limp—0 yn = g.

It is easy to see that an iterative scheme {z,}32, which is T-stable
on K is almost T-stable on K. Osilike [11] proved that the converse is
not true.

DEFINITION 1.3. Let K be a nonempty convex subset of a Banach
space X and let T : K — K be an operator. Suppose that {u,}5%,
and {v,}32, are any bounded sequences in K and {a,}52q, {bn}32y,
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{en oo, {an oo, {0, )20 and {c,}32 are arbitrary sequences in [0, 1]
satisfying certain conditions.
(i) For given zg € K, the sequence {z, }5°, defined by
Yn = (1 = bp)zp, + 0, Tz,
{ Tpt1 = (1 —an)z, +a,T"y,, n>0,
is called the modified Ishikawa iterative sequence [16];
(ii) If b, =0 for n > 0 in (i), then the sequence {z,}3°, defined by

20 €K, Zpt1=01—an)zn+a,T"z,, n>0

is called the modified Mann iterative sequence [14];
(iii) For given z9 € K and a,, + b, + ¢, = al, + b, + ¢, = 1, the

sequence {z,}>°, defined by

{ Yn = Q@ Zn + U, Tz + ¢ up,
Tpt+l = Anly + bnTnyn +cpun, n > 07

is called the modified Ishikawa iterative sequence with errors ;
(iv) If b, = ¢}, = 0 for all n > 0 in (iii), then the sequence {z,}32,

defined by

20 €K, Zpti=antn+b,T"z,+cru,, n>0,

is called the modified Mann iterative sequence with errors.

Goebel-Kirk [4] first introduced the concept of asymptotically non-
expansive mappings. Kirk [9] and Bruck et al. [2] gave also similar
concepts. Goebel-Kirk [4] proved that if K is a bounded closed convex
subset of a uniformly convex Banach space X, then every asymptotically
nonexpansive selfmapping T of K has a fixed point.

The iterative approximation problems of fixed points for asymptoti-
cally nonexpansive mappings were studied extensively by Bose [1], Bruck
et al. [2], Passty [12], Schu ([14], [15]), Tan-Xu [16] and Xu [17].

Rhoades [13] proved that the Mann and Ishikawa, iterative sequences
may exhibit different behaviors for different classes of nonlinear map-
pings. Harder-Hicks [6] revealed the importance of investigating the
stability of various iterative procedures for many classes of nonlinear
mappings. Harder [5] gave applications of stability results to first order
differential equations.

The purpose of this paper is to establish the strong convergence the-
orem, stability and almost stability of the modified Ishikawa iterative
sequences with errors for the iterative approximation of fixed points for
asymptotically nonexpansive and strictly successively hemicontractive
mappings in Banach spaces.
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2. Preliminaries

The following results play important roles in this paper.

LEMMA 2.1. ([10]) Suppose that {a,}2, {6n}S%0, {Vn}S>, and
{wn}S2, are nonnegative sequences such that

Gnyl S (1 - wn)an + /ann + Yn Vn Z O,

with {wn, 132, C [0,1], 220:0 Wy, =00, limp_,oo B, =0 and > oo qvn <
oo. Then lim,,_,., o, = 0.

Lemma 2.2. ([8]) Let X be a Banach space and z,y € X. Then
[lz|] < ||z +~yy|| for all vy > 0 if and only if there exists j(x) € J(z) such
that Re(y,j(z)) > 0.

In the sequel, let I denote the identity mapping, d,, = b, + ¢,, d], =
b, + ¢, and k = =1, where ¢ is the constant appearing in (1.1).

LEMMA 2.3. Let K be a nonempty subset of a Banach space X and

let T : K — K be an operator. Then the following conditions are
equivalent:

(i) T is strictly successively hemicontractive,
(i) F(T) # 0 and there exist t > 1 and ng € N such that

(2.1) llz —ql| < :I:—q—l—’y[(I—T" —kIz — (I—T”~kI)Q] H

forallz € K, g € F(T), v >0 and n > ny.

Proof. Observe that (1.1} is equivalent to
(2.2) Re<(I Tt —kDe—(I-T" - kl)q,j(x — q)>2 0, n>ng.
Thus, we have the desired result from Lemma 2.2. This completes the
proof. O

3. Main results

THEOREM 3.1. Let K be a nonempty convex subset of a Banach

space X. Assume that T : K — K is asymptotically nonexpansive and
strictly successively hemicontractive. Put

s = ma{0,sup{({T"2 = Tyl = llo =] 5,y € K}}, n>0,
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so that
(3.1) lim s, =0.

n—00

Let {un}52, and {v,}52, be arbitrary bounded sequences in K. Sup-

pose that {a'n}?bozm {bn}?f:o; {Cn}%ozo’ {a%}%ozm {b;z}?zo:m {c;z};z.o:O and
{rn}., are arbitrary sequences in [0,1] satisfying

(3.2) an+d,=a,+d, =1 n>0
(3.3) en =Tndy, n>0;
(3.4) Jlim 7, = lim by = lim_ d, =0,
(3.5) i d, = oo.

n=0

Suppose that {x,}5°, is the sequence generated from some zo € K by
{ 2 = apTn + 0, T"Tn + € 0n,
Tpt1 = AnZn + b T"2, + Cruy, n>0.

(3.6)

Let {yn}°, be an arbitrary sequence in K and define {e, }52o by
(3.7)  wp=alyn + U T"Yn +Chvn, € =||Ynt1 —pnll, 7 >0,

where pn, = @nYn + b, T"w,, +cpu,. Then there exists n; € N such that

(i) The sequence {z,}3>, converges strongly to the unique fixed
point q of T. Moreover,

1
znt1 —gll < (1 - ikdn)”mn —ql| + (4di +6cn, +4dn)sn
+deplun — gl] + (242 + 3¢n + 2dn)cnlvn — g,

n 2 ni;
(ii) llynt1 —all < (1= 3kdn)llyn — all + (4d + 6cp + 4dn)sy
g |[up — gl| + (2d2 +3cn +2dn ) [[vn — gl + €n,
n 2 ni;
(iil) 3°0° o €n < oo implies that limy, oo yn = ¢, 50 that {z,}3%, is
almost T-stable on K;
(iv) limy_,o0 Yn = ¢ implies that lim,_, . €, = 0.
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Proof. Note that F(T) # . We claim that F(T) is a singleton.
Otherwise, there exist two distinct elements p,q¢ € F(T). From the
strictly successive hemicontractiveness of T, we obtain that for n > n,

llp — qlI> = Re(p — ¢,5(p — q))
= Re(T"p — q,j(p — 9))
1
< ZHP— all?
<|lp - qll?,

which is impossible. Hence F(T) is a singleton. It follows from (3.2)
and (3.6) that

Ty, = Tyl + dnTp — Ay T2 — Cp (U, — T 25)
=1 +dy)znt1 +dn(I —=T" —kDzpt1 — (2 — k)dpnZpir
+dnxy +dy(T"xpr1 — T"2p) — cpun — T"2n)

(38) = (14 dp)Tnss + dn(I = T — kDznsr + (k — 1)dnn
+ (2= k)2 (20 — T"2n) + du(T " Tpa1 — T"2y)
— 142 - k)dn)ea(un — T z,)

and

(3.9) q=QQ+dy)g+d,(I-T" —kI)g+ (k—1)dnq

for all n > ng. Using (3.8), (3.9) and Lemma 2.3, we know that

llen —dl|
. dn "
> ()| @i 1-gH o (T kD ~(I-T" -k )l
— (1= k)dn|lzn — ]| — (2 — k)d2 [z — T2
(3.10) — AT Tns1 = T" 20| — [+ (2 = k)dn]en[un — T2 |

2 L+ dn)llenss = qll = (1 = K)dallz — gl
— (2= k)d2||zn — T"2|| — dul|T 201 — T2l

— 3cp||un — T 24|

for all n > ng. In view of (3.1), (3.2), (3.6) and (3.10), we conclude that
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|Zns1 — ql|
1+(1-k)d, " "
< _T_:d—“xn_qn-l'dnHT Tns1 — T 2|

<

<

<

<

<

+2d2 ||z — T" 20| + 3cn|[ttn — T" 22|

(1= + )l =l + | (17501 = T
~llmss = 2ll ) Hllomss = 2| 4222 (o =
#1750 — all ) 3cn (720 =l + [~ al)

(1 — kdy, + 3d2)||z,, — q|| + dn (sn + by ||n — T™ 20|

+ alln = 2all + 8,177 = 2l + ¢ un = 2
(22 + 36T 20 — gl + 3callun — |

A [ R N (R AT]
bl — dll + BT — gl + enllun —all + ¢
o = | s+ (2 + 36,) 1772 = g + Bealf — g

(1 — kdp, + 4d% + dpd)||zy — q|| + (2d2 + 3¢, + dpby)

- (HT% —qll — flzn qu)+<2d$; 1 e, + duba)ll2n — |

n dnb'n(nT”xn gl = llow q||)+dnb;nxn 4l

+ (3 + dn)anun - q” + dnc;LH'Un - q” +dnsn

11— kdy + 402 + du(d, + ) 2n — |

+ [2d2 + 3¢, + dn (1 + by, + b0 + (2d2 + 3¢, + drby)
- [(1—d;>||xn gl + BT — gl + cLl[vn — 2l

+ dep||un — gl + dncy ||vn — 4l
(1 — kd, + 6d2 + 3¢, + dnd., + d,bl, + dpb,)||zn — gl
+ (4d% + 6cp, + 4dy,) s, + dcp||un — 4l
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2
+ (2d2 + 3¢y, + 2d,)c | |vn — 4]

for all n > ng. It follows from (3.4) that there exists a positive integer
n1 > ng such that

k
(3.12) 6dy, + 3r, +d, + b, + b, < n>ni.

57
From (3.11) and (3.12), we have

1
nt1 — 4l < (A = Zkd,)||zn — 4d2 + 6c,, + 4d,,)sp
(3.13) [[Tr+1 = gqll <( 5 kdn)llen — gl +( c )s

+ dep|un — gl + (Zdi + 3cn + 2dy)C,||vn — 4|

foralln > ny. Let oy, = ||on—ql|, wn = Skdn, Bp = 2[(4dp+6r,+4)sn+

arp||un — q|| + ¢, (2d, + 37, + 2)||vn — q||] and 7, = 0 for n > n;. Note

that {u,}22, and {v,}32, are bounded. Then Lemma 2.1, (3.1), (3.4),

(3.5) and (3.13) ensure that lim, o a, = 0. That is, lim, o z, = ¢.
Observe that

Yn = Pn + dp¥Yn — dnT"w,, — cp(un, — T wy,)
= (14 dp)pn + du(I = T" — kD)p, + (k — 1)dnyn
+ (2 = B)A (Y — T™wp) + dn(T"pp — T"wy,)
+ 14+ (2 = k)du]en(T™wn — uy)

(3.14)

for all n > ng. By virtue of (3.14), (3.9) and Lemma 2.3, we obtain that

yn — 4|

> (1+4d,)
-H(pn—q)+ 1j_”dn
— (1 = E)dnllyn — qll — (2= k)3 |lyn — T"wnl|
— du||T"pn — T"wn|| = 1+ (2 = k)dn]en [T wy — u,|

> (1+dp)llpn — gl = (1 = k)danllyn — 4l|
— 2d3 |[yn — T™wn|| = dn||T™pn — T wn || — 3cn [T wy, — un|

(I-T"—kDp, — (I —T" - kI)q] ”
(3.15)
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for any n > ng. It follows from (3.2), (3.7), (3.12) and (3.15) that

(3.16)

<

|lpn — all

14+ (1—k)d, o

- - . 7 lYyn — 2d n_Tn n
T d |lyn — all + 24, ||y w|

+ dp||T"pr — T™ Wy || + 3cn|| T wpn — Up||

(1 = kd + &2){|yn — gl +2di(||yn gl 4+ T wn — q||)

(50 + o =l ) 436 (1700l + 1 - al)

< (1 — kdy, + 3d2)||lyn — ql| + (2d2 + 3cn)|| T wn — 4|

+dn (bnl‘yn — T"wy| +Cn”yn — Un| “f‘b;LHyn = T"y,||

e lym — vnn)+dnsn + 3ealfun — gl

< (1—kd, +4d2 +dnd,)|lyn—ql| + (2d2 + 3¢y + dnby)

NT " wn — ql| + dnb, [T Y — ql| + dnsn
+ 4ep|jun — QI| + dnc;z””ﬂ —q||

< (1 —kdy, + 4d% + dnd))|lyn — ql| + (2d2 + 3¢ + dpbn,

+ dpbl, + dn)sn + (2d2 + 3cn + dnby)||lwn — ql|
+ dnbly [y — all + den|lun — gl + dncpllon — gl

< (1 — kdy + 4d2 + dnd, + dnb))|lyn — 4|

+ (2d2 + 3¢, + 3dy) s, + (242 + 3¢, + dnby)
@ = d)lyn — all + b lIT"yn — all + e llvn — 4l

+den|lun — gll + dncpllvn — gl

< (1 = kdy, +6d2 + 3¢y, + dndl, + dnbl, + dby)|lyn — 4l

+ (4d2 + 6cp + 4dn)sn + denllun — 4|
+ (2d2 + 3¢y, + 2dy) | Jvn — 4l

1

+ 4dcp||un — QH + (2d121 + 3cn +2dn)c;||vn - QH
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for all n > ny. Thus (3.8) and (3.16) yield that
|[Yn+1 — gll
< lpn — all + |lynt1 — pall
(317 <(1- %kdn)llyn — g + (4d% + 6¢,, + 4dy,)sn,
+ denllun — gl] + (27, + 3cn + 2dn ) [lon — qll + €

for all n > n;y.
Suppose that Y - €, < 00. Put a, = [|yn — ql|, wn = %kdn, Bn =

2 [(4dn 4+ 671, + 4)s, + 41y l|luy, — gl + (2dn + 37y, + 2) v — qH] and
Yn = €y, for all n > 0. Then (3.17) can be rewritten as
Qny1 < (1 - Wn)an 'f"wnﬂn + Yny N Z N1

Note that lim, oo B, = 0. It follows from Lemma 2.1, (3.5) and the
above inequality that lim,_,,, o, = 0. That is, lim,, .. yn = q.

Conversely, suppose that lim,_,o ¥, = ¢. Then (3.4), (3.7) and (3.16)
imply that

en < [|Ynt+1 = gl| + [Ipn — ]
< g = all + (U= )iy — all + (43 + 6 +4d ),
+ 4ep|[un — g|] + (2d2 + 3¢y, + 2d,) ) |Jom — gl
=0
as n — oo. Hence lim,,_, o €, = 0. This completes the proof. O

THEOREM 3.2. Let X, K, T, {s,}5%0, {un}s20, {vn}0, {24},
{zn}nzor {yntnzos {wnlnZo, {Pn}alo and {en}7ly be as in Theorem
3.1.  Suppose that {an}3lg, {bn}nlo, {cn}nZo, {an}020, {bh}nlo and
{ch}>2y are arbitrary sequences in [0,1] satisfying (3.2), (3.5) and

(3.18) > e < 005
n=0
(3.19) lim b, = lim d/, = 0.
n—o0 n—oo

Then the conclusions of Theorem 3.1 hold.



466 Z. Liu, J. K. Kim, and K. H. Kim

Proof. Since (3.8) implies lim,,_, o 7, = 0, we can directly get the
desired results from Theorem 3.1. O

REMARK 3.1. The following examples reveal that conditions (3.2)—
(3.5) are different from conditions (3.2), (3.5), (3.18) and (3.19).

EXAMPLE 3.1. Let ap, =1— (n+2)"% — (n+2)"3%, b, = (n+2)"1,
eh=n+2)72, =1+ n+2)5)" o, =nn+2'and b, = ¢, =
(n+2)71, for n > 0. Then conditions (3.2)—(3.5) are satisfied. But the
condition (3.18) does not hold.

ExAMPLE 3.2. Let al,, b/, and ¢/, be as in Example 3.1. Take ¢, =
(n+2)"2 by, =2(2n+2)"2, by = (2n+2) L and a, = 1 — b, — ¢y,
n > 0. Then conditions (3.2), (3.5), (3.18) and (3.19) are fulfilled. But
conditions (3.3) and (3.4) do not hold since lim, o 7-222— = 1 #0.

b2'n.+c2'n,
THEOREM 3.3. Let X, K, T, {s,}520, {un}0, {vn}0; {20},
{zn}ntos {Untnzo, {wnlnZo, {Pnlnlo and {en}olo be as in Theorem

3.1._ Suppose that {an}720, {bn}iZo, {en}nlo, {antnio, {bh}7Zo and
{c,}5o, are arbitrary sequences in [0, 1] satisfying (3.2) and

(3.20) lim ¢, = lim ¢, =0;

n—00 n—0o0

(3.21)  kd, — 6d2 — 3¢, — dndl, — dpbl, —dpby, > v >0, n>ny,

where v is a constant. Then
(i) The sequence {z,}S%, converges strongly to the unique fixed

point q of T. Moreover,
|zn+1 —qll < (1= Mllzn — gl + (4d}; + 6c, + 4dy)sn
‘ + 4cp||un — g|] + (242 + 3¢y, + 2dy)c v — @ll, > no;
(i) Hynt+1—all < (1=")lyn — gl 4 (43 +-6cp, +4dy ) sn + 4 |[un — 4|

+(2di + 3en + 2dn)C;L||'Un - QH +€n, N2 Mngp;
(ii)) limp—ooyn =¢ ifand only if lim,_, €, =0.

Proof. Tt follows from the proof of Theorem 3.1 that F(T') = {q},
l|Zni1—q|| < (1—kd,+6d2 +3c, +dnd, +dpbl, +dnbn)||zn —q||

(3.22) + (4d2 + 6c,, + 4d,) s + 4cn||un — g
+ (2d7, + 3cn + 2dn )| [vn — |
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and

|lpr — 4l v
< (1 — kdy + 6d2 + 3¢, + dndy, + dnbl, + dnbn)|lyn — gl
+ (4d2 + 6c, + 4d,) s, + dey||un — g
+ (Zdi + 3cn + 2dy) ey, ||vn ~ gl

(3.23)

for all n > ng. Using (3.21) and (3.22), we know that for n > ny,

lzn+1 = gll < (1= Dllen — qll + (4d5, + 6c, + 4dn)sn

(3.24) , /
+ den|lun — gl| + (2d5; + 3cn + 2dn)cp||vn — ql|-

Set an = ||Zn — q||, wn =7, Bn = YL [(4d2 + 6¢,, + 4dy) sy, + den|un —
ql| + (2d2 + 3c,, + 2d,, ), ||vn — ql|] and v, = 0 for n > ng. Then Lemma
2.1, (3.1), (3.20), (3.24) and the boundedness of {u,}52, and {v,}>2,
yield that lim,,_, o, &, = 0. This means that im, ., Tn = ¢.

By virtue of (3.21) and (3.23), we get that for all n > ny,

n+1 — all < lpr — all + 1[Yn+1 — Pall
< (1 =Y)|lyn = qll + (4d2 + 6c,, + 4d,)sn
+ 4en|jun — gl + (2d2 + 3¢, + 2d,)C, | |[vn — gl + €n.

Suppose that lim,_ y, = ¢. In view of (3.1}, (3.20), (3.21) and
(3.23), we have

én < ||Yng1 — qll + |Ipn — 4l
< ynt1 = all + (L= Mllyn — qll + (4d2 + 6cn + 4d,,)s,
+ e |lun — gl + (2d% + 3¢, + 2d,)c, | |vn — ql]
-0

as n — o0o. Hence lim,,_, o €, = 0. Suppose that lim, .. €, = 0. Let
o = {[Yn — qll, wn =7, Bn = v H{(4d2 + 6cp + 4dp ) s + denllun — gl +
(2d2 + 3¢, + 2d,,)C, | |vn — gl| + €n] and v, = 0 for n > ng. Then Lemma
2.1, (3.1), (3.20), (3.25) and the boundedness of {u,}5>, and {v,}>2,
ensure that lim,_. . ¥y, = q. The proof is completed. O
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