STATE EXTENSIONS OF STATES ON UHF $_n$ ALGEBRA TO CUNTZ ALGEBRA

Dong-Yun Shin

ABSTRACT. Let $\eta = \{\eta_m\}_m$ be an eventually constant sequence of unit vectors η_m in \mathbb{C}^n and let ρ_η be the pure state on UHF_n algebra which is defined by $\rho_\eta(v_{i_1}\cdots v_{i_k}v_{j_k}^*\cdots v_{j_1}^*) = \overline{\eta_1^{i_1}\cdots \eta_k^{i_k}}\,\eta_k^{j_k}\cdots \eta_1^{j_1}$. We find infinitely many state extensions of ρ_η to Cuntz algebra \mathcal{O}_n using representations and unitary operators. Also, we present their concrete expressions.

1. Introduction

For each integer $n \geq 2$, J. Cuntz [4] introduced the universal C^* -algebra \mathcal{O}_n generated by n isometries s_1, s_2, \dots, s_n satisfying the Cuntz relations

$$s_i^* s_j = \delta_{ij} 1$$
 and $\sum_{i=1}^n s_i s_i^* = 1$.

It is called the Cuntz algebra and the isomorphic type of this simple C^* -algebra does not depend on the choice of isometries but on the number of isometries. A UHF_n algebra is a uniformly hyperfinite algebra $\underset{i=1}{\overset{\infty}{\otimes}} M_n$ which is the completion of finite linear combinations of operators of the form $A_1 \otimes A_2 \otimes \cdots$, where each A_i is an $n \times n$ matrix and all but finitely many of the A_i 's are the identity and we understand UHF_n algebra as a subalgebra of \mathcal{O}_n . We note that the linear span of operators of the form $s_{i_1}s_{i_2}\cdots s_{i_k}s_{j_i}^*s_{j_{l-1}}^*\cdots s_{j_1}^*$ for $k,l=1,2,\cdots$ is dense in the Cuntz algebra \mathcal{O}_n and a subalgebra UHF_n of \mathcal{O}_n is the closure of the linear span of operators of the form $s_{i_1}s_{i_2}\cdots s_{i_k}s_{j_k}^*s_{j_{k-1}}^*\cdots s_{j_1}^*$.

Received April 4, 2002.

²⁰⁰⁰ Mathematics Subject Classification: Primary 46L30; Secondary 46L35. Key words and phrases: Cuntz algebra, UHF_n algebra, state, extension. This work was supported by UOS-2000.

One of the topics of the study of the Cuntz algebra \mathcal{O}_n is about it's representations. In detail, there is a correspondence between representations of the Cuntz algebra \mathcal{O}_n and endomorphisms of $\mathcal{B}(\mathcal{H})$ of Powers index n up to unitary action, where $\mathcal{B}(\mathcal{H})$ is the set of all bounded linear operators on a Hilbert space \mathcal{H} .

So, it is one of main concerns to study the representations of the Cuntz algebra \mathcal{O}_n . Since states on the Cuntz algebra \mathcal{O}_n give representations of \mathcal{O}_n by GNS constructions, it is natural that our attention is to study states on \mathcal{O}_n .

For a sequence $\eta = {\{\eta_m\}_m}$ of unit vectors $\eta_m = (\eta_m^1, \dots, \eta_m^n) \in \mathbb{C}^n$, the associated linear functional ω_n on \mathcal{O}_n which is defined by

$$\omega_{\eta}(s_{i_1}\cdots s_{i_k}s_{j_l}^*\cdots s_{j_1}^*) = \overline{\eta_1^{i_1}\cdots \eta_k^{i_k}}\eta_l^{j_l}\cdots \eta_1^{j_1}$$

is a state if and only if it is a constant sequence $\{\eta_m\}_m$ of a unit vector $\eta_m = \eta_1$ for all m. While, for any sequence $\eta = \{\eta_m\}_m$ of unit vectors $\eta_m = (\eta_m^1, \dots, \eta_m^n) \in \mathbb{C}^n$, the associated linear functional $\rho_{\eta} = \omega_{\eta}|_{\text{UHF}_n}$ on UHF_n algebra is a pure state(see [5], [8]).

In this paper, we find infinitely many state extensions of ρ_{η} on UHF_n algebra to Cuntz algebra \mathcal{O}_n using representations and unitary operators. Also, we present their concrete expressions.

2. State extensions by representations

Throughout this section, let the sequence $\eta = {\{\eta_m\}_m}$ of unit vectors $\eta_m = (\eta_m^1, \dots, \eta_m^n) \in \mathbb{C}^n$ be fixed and eventually constant, that is, there is a positive integer k such that $l, m \geq k$ implies that $\eta_l = \eta_m$.

The pure state ρ_k on M_n is defined by $\rho_k(a) = \langle a\eta_k, \eta_k \rangle$, where \langle , \rangle is the usual inner product on \mathbb{C}^n . Then for an eventually constant sequence $\eta = \{\eta_m\}_m$ of unit vectors $\eta_m \in \mathbb{C}^n$, the pure state ρ_η on UHF_n algebra is the product state $\otimes \rho_k$ on $\otimes M_n$, so that the corresponding GNS representation $(\pi_\eta, \mathcal{H}_\eta, \Omega_\eta)$ for ρ_η is irreducible and $\rho_\eta(x) = \langle \pi_\eta(x)\Omega_\eta, \Omega_\eta \rangle$.

We review some important facts about \mathcal{H}_{η} and $\mathcal{B}(\mathcal{H}_{\eta})$ (see [3], [6]).

Consider the set of all formal tensor products of vectors $x_1 \otimes x_2 \otimes \cdots$, where $x_k = \eta_k$ for all but finitely many of the vectors x_k . Then there is a natural inner product which is defined on finite linear combinations of those vectors, satisfying

$$\langle \otimes x_k, \otimes y_k \rangle = \prod_{k=1}^{\infty} \langle x_k, y_k \rangle.$$

Then \mathcal{H}_{η} is the Hilbert space completion of the inner product space. Also note that the cyclic unit vector Ω_{η} in the GNS representation for ρ_{η} is $\otimes \eta_k$.

Let $\{\xi_m : m \in \mathbb{N}\}$ be a sequence of unit vectors in \mathbb{C}^n which satisfies $\sum_{m=1}^{\infty} ||\xi_m - \eta_m|| < \infty$ and for each positive integer m, let ξ^m be the vector in \mathcal{H}_{η} given by $\xi^m = \xi_1 \otimes \xi_2 \otimes \cdots \otimes \xi_m \otimes \eta_{m+1} \otimes \eta_{m+2} \otimes \cdots$. Then $\{\xi^m\}$ is a Cauchy sequence (see,[3], [6]). Hence it makes sense to represent the limit of such a Cauchy sequence by the symbol $\otimes \xi_m := \bigotimes_{m=1}^{\infty} \xi_m$.

For each $m \in \mathbb{N}$, let $\{\eta_{m1}, \dots, \eta_{mn}\}$ be an orthonormal basis for \mathbb{C}^n selected so that $\eta_{m1} = \eta_m$. Let \mathbb{I} be the set of all ordered sequence $P = \{p_1, p_2, \dots\}$ where $p_m \in \{1, 2, \dots, n\}$ for each m, and $p_m = 1$ for all m but finitely many of p_m . We define $\delta_{P,Q}, P, Q \in \mathbb{I}$, to be 1 if $p_m = q_m$ for all k, and otherwise 0. We use the notation $\eta(P)$ to represent the unit vector $\otimes \eta_{mp_m}$ in \mathcal{H}_{η} . From discussion above, linear combinations of the vectors $\eta(P)$ are dense in H_{η} and furthermore, $\langle \eta(P), \eta(Q) \rangle = \delta_{P,Q}, P, Q \in \mathbb{I}$ and the set $\{\eta(P) : P \in \mathbb{I}\}$ forms an orthonormal basis for \mathcal{H}_{η} (see [3], [6]).

PROPOSITION 2.1. Let $\{e_1, \dots, e_n\}$ be the standard orthonormal basis for \mathbb{C}^n . Define linear operators v_1, v_2, \dots, v_n in $\mathcal{B}(\mathcal{H}_{\eta})$ by $v_i(\eta(P)) = e_i \otimes \eta(P)$. Then the following hold:

- (1) $v_i^*(h \otimes \eta(P)) = \langle h, e_i \rangle \eta(P)$ for each $h \in \mathbb{C}^n$.
- (2) $v_k^* v_l = \delta_{k,l} I$ and $\sum_{i=1}^n v_i v_i^* = I$.
- $(3) v_{i_1} v_{i_2} \cdots v_{i_k} v_{j_l}^* \cdots v_{j_1}^* (h_1 \otimes h_2 \otimes \cdots)$ $= \langle h_1, e_{j_1} \rangle \cdots \langle h_l, e_{j_l} \rangle e_{i_1} \otimes \cdots \otimes e_{i_k} \otimes h_{l+1} \otimes h_{l+2} \otimes \cdots.$

Proof. (1) Since for any $Q \in \mathbb{I}$,

$$\langle v_i^*(h \otimes \eta(P)), \eta(Q) \rangle = \langle h \otimes \eta(P), v_i(\eta(Q)) \rangle$$

$$= \langle h \otimes \eta(P), e_i \otimes \eta(Q) \rangle$$

$$= \langle h, e_i \rangle \langle \eta(P), \eta(Q) \rangle$$

$$= \langle \langle h, e_i \rangle \eta(P), \eta(Q) \rangle$$

and the set $\{\eta(Q): Q \in \mathbb{I}\}$ forms an orthonormal basis for \mathcal{H}_{η} , we have $v_i^*(h \otimes \eta(P)) = \langle h, e_i \rangle \eta(P)$ for each $h \in \mathbb{C}^n$.

(2) Since $v_k^*(h \otimes \eta(P)) = \langle h, e_k \rangle \eta(P)$ for each $h \in \mathbb{C}^n$ and any $P \in \mathbb{I}$, we have $v_k^* v_l(\eta(P)) = v_k^*(e_l \otimes \eta(P)) = \langle e_l, e_k \rangle \eta(P)$. Therefore for any $i \in \{1, 2, \dots, n\}$ we have $v_k^* v_l = \delta_{k,l} I$. Since for any $k \in \{1, 2, \dots, n\}$

and any $P \in \mathbb{I}$, we have

$$(\sum_{i=1}^{n} v_i v_i^*)(e_k \otimes \eta(P)) = \sum_{i=1}^{n} v_i (v_i^*(e_k \otimes \eta(P)))$$
$$= \sum_{i=1}^{n} v_i (\langle e_k, e_i \rangle \eta(P))$$
$$= v_k (\eta(P))$$
$$= e_k \otimes \eta(P).$$

Therefore we have $\sum_{i=1}^{n} v_i v_i^* = I$.

(3) We have the following.

$$\begin{aligned} v_{i_{1}}v_{i_{2}}\cdots v_{i_{k}}v_{j_{l}}^{*}\cdots v_{j_{1}}^{*}(h_{1}\otimes h_{2}\otimes\cdots) \\ &= v_{i_{1}}v_{i_{2}}\cdots v_{i_{k}}v_{j_{l}}^{*}\cdots v_{j_{2}}^{*}(v_{j_{1}}^{*}(h_{1}\otimes h_{2}\otimes\cdots)) \\ &= v_{i_{1}}v_{i_{2}}\cdots v_{i_{k}}v_{j_{l}}^{*}\cdots v_{j_{2}}^{*}(\langle h_{1},e_{j_{1}}\rangle h_{2}\otimes h_{3}\otimes\cdots) \\ &= \langle h_{1},e_{j_{1}}\rangle v_{i_{1}}v_{i_{2}}\cdots v_{i_{k}}v_{j_{l}}^{*}\cdots v_{j_{2}}^{*}(h_{2}\otimes h_{3}\otimes\cdots) \\ &= \langle h_{1},e_{j_{1}}\rangle \cdots \langle h_{l},e_{j_{l}}\rangle v_{i_{1}}v_{i_{2}}\cdots v_{i_{k}}(h_{l+1}\otimes h_{l+2}\otimes\cdots) \\ &= \langle h_{1},e_{j_{1}}\rangle \cdots \langle h_{l},e_{j_{l}}\rangle e_{i_{1}}\otimes\cdots\otimes e_{i_{k}}\otimes h_{l+1}\otimes h_{l+2}\otimes\cdots. \end{aligned}$$

By (2) of the previous Proposition 2.1, we see that the operators v_1, \dots, v_n are isometries and generate the Cuntz algebra \mathcal{O}_n .

In this section, let $\eta = {\{\eta_m\}_m}$ be an eventually constant sequence of unit vectors $\eta_m \in \mathbb{C}^n$.

THEOREM 2.2. Let ρ_{η} be the pure state on UHF_n algebra which is defined by $\rho_{\eta}(v_{i_1}\cdots v_{i_k}v_{j_k}^*\cdots v_{j_1}^*)=\overline{\eta_1^{i_1}\cdots \eta_k^{i_k}}\eta_k^{j_k}\cdots \eta_1^{j_1}$. Then there is a vector state ψ_{η} on $\mathcal{B}(\mathcal{H}_{\eta})$ which is an extension of ρ_{η} .

Proof. Let Ω be the ordered sequence given by $\Omega = \{p_1, p_2, \dots\}$ with $p_k = 1$ for all k and let ψ_{η} be the vector state on $\mathcal{B}(\mathcal{H}_{\eta})$ given by $\psi_{\eta}(s) = \langle s\eta(\Omega), \eta(\Omega) \rangle$. Then $\eta(\Omega) = \eta_{11} \otimes \eta_{21} \otimes \dots = \eta_1 \otimes \eta_2 \otimes \dots$ and

$$\psi_{\eta}(v_{i_1}v_{i_2}\cdots v_{i_k}v_{j_l}^*\cdots v_{j_1}^*)$$

$$=\langle v_{i_1}v_{i_2}\cdots v_{i_k}v_{j_l}^*\cdots v_{j_1}^*\eta(\Omega), \eta(\Omega)\rangle$$

$$\begin{split} &= \langle v_{j_{l}}^{*} \cdots v_{j_{1}}^{*} \eta(\Omega), v_{i_{k}}^{*} \cdots v_{i_{1}}^{*} \eta(\Omega) \rangle \\ &= \langle \langle \eta_{1}, e_{j_{1}} \rangle \cdots \langle \eta_{l}, e_{j_{l}} \rangle \eta_{l+1} \otimes \eta_{l+2} \otimes \cdots, \\ & \langle \eta_{1}, e_{i_{1}} \rangle \cdots \langle \eta_{k}, e_{i_{k}} \rangle \eta_{k+1} \otimes \eta_{k+2} \otimes \cdots \rangle \\ &= \langle \eta_{1}, e_{j_{1}} \rangle \cdots \langle \eta_{l}, e_{j_{l}} \rangle \overline{\langle \eta_{1}, e_{i_{1}} \rangle \cdots \langle \eta_{k}, e_{i_{k}} \rangle} \\ & \langle \eta_{l+1} \otimes \eta_{l+2} \otimes \cdots, \eta_{k+1} \otimes \eta_{k+2} \otimes \cdots \rangle \\ &= \overline{\eta_{1}^{i_{1}} \cdots \eta_{k}^{i_{k}}} \eta_{l}^{j_{l}} \cdots \eta_{1}^{j_{1}} \langle \eta_{l+1}, \eta_{k+1} \rangle \langle \eta_{l+2}, \eta_{k+2} \rangle \cdots. \end{split}$$

In particular, $\psi_{\eta}(v_{i_1}v_{i_2}\cdots v_{i_k}v_{j_k}^*\cdots v_{j_1}^*) = \rho_{\eta}(v_{i_1}\cdots v_{i_k}v_{j_k}^*\cdots v_{j_1}^*)$. Hence the vector state ψ_{η} on $\mathcal{B}(\mathcal{H}_{\eta})$ given by $\psi_{\eta}(s) = \langle s\eta(\Omega), \eta(\Omega) \rangle$ is an extension of ρ_{η} .

Example 2.3. In case of $\eta_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ and $\eta_m = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ for $m \geq 2$, let ψ_{η} be the state extension of ρ_{η} in Theorem 2.2. Then

$$\psi_{\eta}(v_{i_1}v_{i_2}\cdots v_{i_k}v_{j_l}^*\cdots v_{j_1}^*) = \overline{\eta_1^{i_1}\cdots \eta_k^{i_k}} \eta_k^{j_k}\cdots \eta_1^{j_1} \langle \eta_{l+1}, \eta_{k+1} \rangle \cdots.$$

Hence

$$\psi_{\eta}(v_{i_1}v_{i_2}\cdots v_{i_k}v_{j_l}^*\cdots v_{j_1}^*) = \begin{cases} 1, & \text{if } i_1 = j_1 = 2, i_2 = \cdots = j_2 = \cdots = 1\\ 0, & \text{otherwise.} \end{cases}$$

REMARK 2.4. Let λ be a complex number with $|\lambda|=1$ and let $\lambda\eta=\{\xi_m\}_m$ be the sequence with $\xi_m=\lambda\eta_m$. Then $\rho_\eta=\rho_{\lambda\eta}$ for each complex number λ with $|\lambda|=1$, but $\psi_{\lambda_1\eta}=\psi_{\lambda_2\eta}$ if and only if $\lambda_1=\lambda_2$. Hence ρ_η has infinitely many vector state extensions to $\mathcal{B}(\mathcal{H}_\eta)$. Since vector states are pure on $\mathcal{B}(\mathcal{H}_\eta)$, we see that ρ_η has infinitely many pure state extensions.

3. State extensions by unitary operators

Throughout this section, we fix a unit vector h in \mathbb{C}^n . Let $h_c = \{h_m\}_m$ be the constant sequence with $h_m = h$ for all m, let l be a fixed positive integer and let $\eta = \{\eta_m\}_m$ be a fixed sequence of unit vectors $\eta_m = (\eta_m^1, \dots, \eta_m^n) \in \mathbb{C}^n$ with $\eta_k = h$ for k > l.

We identify a vector y in \mathbb{C}^n with an $n \times 1$ matrix. For $1 \leq i \leq l$, let u_i be an $n \times n$ unitary matrix satisfying $u_i(\eta_i) = h$ and let $u = u_1 \otimes u_2 \otimes \cdots \otimes u_n$

 $u_l \otimes I_n \otimes I_n \otimes \cdots$, where I_n is the $n \times n$ identity matrix. Then $u \in \bigotimes_{i=1}^{\infty} M_n$ and u is unitary. Let $\{e_{ij}\}_{i,j}$ be the standard matrix units for M_n . Identifying $e_{i_1j_1} \otimes \cdots \otimes e_{i_kj_k} \otimes I_n \otimes \cdots$ in $\bigotimes_{i=1}^{\infty} M_n$ with $s_{i_1}s_{i_2} \cdots s_{i_k}s_{j_k}^* \cdots s_{j_1}^*$ in \mathcal{O}_n we understand UHF_n algebra as a subalgebra of \mathcal{O}_n .

Recall that for a sequence $\eta = \{\eta_m\}_m$ of unit vectors $\eta_m = (\eta_m^1, \cdots, \eta_m^n) \in \mathbb{C}^n$, the pure state ρ_η on UHF_n algebra is defined by

$$\rho_{\eta}(s_{i_{1}}\cdots s_{i_{k}}s_{j_{k}}^{*}\cdots s_{j_{1}}^{*}) = \overline{\eta_{1}^{i_{1}}\cdots \eta_{k}^{i_{k}}} \eta_{k}^{j_{k}}\cdots \eta_{1}^{j_{1}}$$
$$= (\eta_{1}^{*}e_{i_{1}j_{1}}\eta_{1})\cdots (\eta_{k}^{*}e_{i_{k}j_{k}}\eta_{k}).$$

PROPOSITION 3.1. In the above notations, $\rho_n(\cdot) = \rho_{h_n}(u \cdot u^*)$.

Proof. Let $u_i = I_n$ for $i \ge l$. Then for any $x = e_{i_1 j_1} \otimes \cdots \otimes e_{i_k j_k} \otimes I_n \otimes \cdots = s_{i_1} s_{i_2} \cdots s_{i_k} s_{j_k}^* \cdots s_{j_1}^*$ in UHF_n algebra and $h^* u_i = (u_i \eta_i)^* u_i = \eta_i^*$, we have

$$\rho_{h_c}(uxu^*) = \rho_{h_c}((u_1 \otimes \cdots \otimes u_l \otimes I_n \otimes \cdots)(e_{i_1j_1} \otimes \cdots \otimes e_{i_kj_k} \otimes I_n \otimes \cdots) \\
(u_1^* \otimes \cdots \otimes u_l^* \otimes I_n \otimes \cdots)) \\
= \rho_{h_c}(u_1e_{i_1j_1}u_1^* \otimes \cdots \otimes u_ke_{i_kj_k}u_k^* \otimes I_n \otimes I_n \otimes \cdots) \\
= (h^*u_1e_{i_1j_1}u_1^*h) \cdots (h^*u_ke_{i_kj_k}u_k^*h) \\
= (\eta_1^*e_{i_1j_1}\eta_1) \cdots (\eta_k^*e_{i_kj_k}\eta_k) \\
= (\overline{\eta_1^{i_1}}\eta_1^{j_1}) \cdots (\overline{\eta_k^{i_k}}\eta_k^{j_k}) \\
= \overline{\eta_1^{i_1} \cdots \eta_k^{i_k}} \eta_1^{j_1} \cdots \eta_k^{j_k} \\
= \rho_{\eta}(s_{i_1}s_{i_2} \cdots s_{i_k}s_{i_k}^* \cdots s_{i_1}^*)$$

and the subalgebra UHF_n of \mathcal{O}_n is the closure of the linear span of operators of the form $s_{i_1}s_{i_2}\cdots s_{i_k}s_{j_k}^*s_{j_{k-1}}^*\cdots s_{j_1}^*$. Hence we have $\rho_{\eta}(\cdot) = \rho_{h_r}(u \cdot u^*)$.

THEOREM 3.2. Let ρ_{η} be the pure state on UHF_n algebra which is defined by $\rho_{\eta}(v_{i_1}\cdots v_{i_k}v_{j_k}^*\cdots v_{j_1}^*)=\overline{\eta_1^{i_1}\cdots \eta_k^{i_k}\eta_k^{j_k}\cdots \eta_1^{j_1}}$. Then there is a unitary operator u in UHF_n algebra such that $\psi(\cdot)=\omega_{h_c}(u\cdot u^*)$ is an extension of ρ_{η} to the Cuntz algebra \mathcal{O}_n .

Proof. Let $u = u_1 \otimes u_2 \otimes \cdots \otimes u_l \otimes I_n \otimes I_n \otimes \cdots$ be unitary in $\bigotimes_{i=1}^{\infty} M_n$ as above. Since ω_{h_c} is a state on the Cuntz algebra \mathcal{O}_n and u is unitary in UHF_n algebra, $\psi(\cdot) = \omega_{h_c}(u \cdot u^*)$ is a state on the Cuntz algebra \mathcal{O}_n . By Proposition 3.1, ψ is an extension of ρ_η to the Cuntz algebra \mathcal{O}_n . \square

REMARK 3.3. Let λ be a complex number with $|\lambda|=1$ and let $\lambda h_c=\{\xi_m\}_m$ be the sequence with $\xi_m=\lambda h$. Then $\rho_{h_c}=\rho_{\lambda h_c}$ and $\psi_{\lambda}(\cdot)=\omega_{\lambda h_c}(u\cdot u^*)$ is a state on the Cuntz algebra \mathcal{O}_n . Furthermore $\psi_{\lambda_1}=\psi_{\lambda_2}$ if and only if $\lambda_1=\lambda_2$. Hence ρ_{η} has infinitely many state extensions to the Cuntz algebra \mathcal{O}_n .

EXAMPLE 3.4. In case of
$$\eta_1 = \eta_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
 and $h = \eta_m = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ for $m \geq 3$, let $u_1 = u_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Then $u_1(\eta_1) = u_2(\eta_2) = h$,
$$u = u_1 \otimes u_2 \otimes I_2 \otimes I_2 \otimes \cdots$$
$$= (e_{12} + e_{21}) \otimes (e_{12} + e_{21}) \otimes I_2 \otimes I_2 \otimes \cdots$$
$$= (e_{12} \otimes e_{12} + e_{12} \otimes e_{21} + e_{21} \otimes e_{12} + e_{21} \otimes e_{21}) \otimes I_2 \otimes I_2 \otimes \cdots$$
$$= s_1^2 (s_2^*)^2 + s_1 s_2 s_1^* s_2^* + s_2 s_1 s_2^* s_1^* + s_2^2 (s_1^*)^2$$

and $\omega_{h_c}(u \cdot u^*)$ is a state extension of ρ_{η} to the Cuntz algebra \mathcal{O}_2 .

Example 3.5. In case of
$$\eta_1 = \begin{pmatrix} \frac{3}{5} \\ \frac{4}{5} \\ 0 \end{pmatrix}$$
, $\eta_2 = \begin{pmatrix} 0 \\ \frac{3}{5} \\ \frac{4}{5} \end{pmatrix}$ and $h = \eta_m = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ for $m \geq 3$, let $u_1 = \begin{pmatrix} \frac{3}{5} & \frac{4}{5} & 0 \\ \frac{4}{5} & -\frac{3}{5} & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $u_2 = \begin{pmatrix} 0 & \frac{3}{5} & \frac{4}{5} \\ 0 & \frac{4}{5} & -\frac{3}{5} \\ 1 & 0 & 0 \end{pmatrix}$.

Then
$$u_1(\eta_1) = u_2(\eta_2) = h$$
 and

$$\begin{aligned} &u_1\otimes u_2\\ &= (\frac{3}{5}e_{11} + \frac{4}{5}e_{12} + \frac{4}{5}e_{21} - \frac{3}{5}e_{22} + e_{33})\\ &\otimes (\frac{3}{5}e_{12} + \frac{4}{5}e_{13} + \frac{4}{5}e_{22} - \frac{3}{5}e_{23} + e_{31})\\ &= \frac{9}{25}e_{11}\otimes e_{12} + \frac{12}{25}e_{11}\otimes e_{13} + \frac{12}{25}e_{11}\otimes e_{22} - \frac{9}{25}e_{11}\otimes e_{23} + \frac{3}{5}e_{11}\otimes e_{31}\\ &+ \frac{12}{25}e_{12}\otimes e_{12} + \frac{16}{25}e_{12}\otimes e_{13} + \frac{16}{25}e_{12}\otimes e_{22} - \frac{12}{25}e_{12}\otimes e_{23} + \frac{4}{5}e_{12}\otimes e_{31}\\ &+ \frac{12}{25}e_{21}\otimes e_{12} + \frac{16}{25}e_{21}\otimes e_{13} + \frac{16}{25}e_{21}\otimes e_{22} - \frac{12}{25}e_{21}\otimes e_{23} + \frac{4}{5}e_{21}\otimes e_{31}\\ &+ \frac{1}{25}e_{22}\otimes e_{12} + \frac{16}{25}e_{22}\otimes e_{13} - \frac{12}{25}e_{22}\otimes e_{22} + \frac{9}{25}e_{22}\otimes e_{23} - \frac{3}{5}e_{22}\otimes e_{31}\\ &- \frac{9}{25}e_{22}\otimes e_{12} - \frac{12}{25}e_{22}\otimes e_{13} - \frac{12}{25}e_{22}\otimes e_{22} + \frac{9}{25}e_{22}\otimes e_{23} - \frac{3}{5}e_{22}\otimes e_{31}\\ &+ \frac{3}{5}e_{33}\otimes e_{12} + \frac{4}{5}e_{33}\otimes e_{13} + \frac{4}{5}e_{33}\otimes e_{22} - \frac{3}{5}e_{33}\otimes e_{23} + e_{33}\otimes e_{31}.\end{aligned}$$

Hence

$$\begin{split} u &= u_1 \otimes u_2 \otimes I_3 \otimes I_3 \otimes \cdots \\ &= \frac{9}{25} s_1^2 s_2^* s_1^* + \frac{12}{25} s_1^2 s_3^* s_1^* + \frac{12}{25} s_1 s_2 s_2^* s_1^* - \frac{9}{25} s_1 s_2 s_3^* s_1^* + \frac{3}{5} s_1 s_3 (s_1^*)^2 \\ &+ \frac{12}{25} s_1^2 (s_2^*)^2 + \frac{16}{25} s_1^2 s_3^* s_2^* + \frac{16}{25} s_1 s_2 (s_2^*)^2 - \frac{12}{25} s_1 s_2 s_3^* s_2^* + \frac{4}{5} s_1 s_3 s_1^* s_2^* \\ &+ \frac{12}{25} s_2 s_1 s_2^* s_1^* + \frac{16}{25} s_2 s_1 s_3^* s_1^* + \frac{16}{25} s_2^2 s_2^* s_1^* - \frac{12}{25} s_2^2 s_3^* s_1^* + \frac{4}{5} s_2 s_3 (s_1^*)^2 \\ &- \frac{9}{25} s_2 s_1 (s_2^*)^2 - \frac{12}{25} s_2 s_1 s_3^* s_2^* - \frac{12}{25} s_2^2 (s_2^*)^2 + \frac{9}{25} s_2^2 s_3^* s_2^* - \frac{3}{5} s_2 s_3 s_1^* s_2^* \\ &+ \frac{3}{5} s_3 s_1 s_2^* s_3^* + \frac{4}{5} s_3 s_1 (s_3^*)^2 + \frac{4}{5} s_3 s_2 s_2^* s_3^* - \frac{3}{5} s_3 s_2 (s_3^*)^2 + s_3^2 s_1^* s_3^* \end{split}$$

and $\omega_{h_c}(u \cdot u^*)$ is a state extension of ρ_{η} to the Cuntz algebra \mathcal{O}_3 .

References

- [1] W. B. Arveson, Continuous analogues of Fock space I, Mem. Amer. Math. Soc. 80 (1989), no. 409.
- [2] O. Bratteli and P.E.T. Jorgensen, Isometries, shifts, Cuntz algebras and multiresolution wavelet analysis of scale N, Integral Equations Operator Theory 28 (1997), 382-443.
- [3] O. Bratteli, P.E.T. Jorgensen, and G. L. Price, *Endomorphisms of B(H)*, Proc. Sympos. Pure Math. **59** (1996), 93–138.
- [4] J. Cuntz, Simple C*-algebras generated by isometries, Comm. Math. Phys. 57 (1977), 173–185.
- [5] J. Glimm, On a certain class of operator algebras, Trans. Amer. Math. Soc. 95 (1960), 318-340.
- [6] A. Guichardet, Tensor products of C*-algebras, vol. 12, Math. Inst. Aarhus University, Lecture notes, 1969.
- [7] M. Laca, Endomorphisms of B(H) and Cuntz algebras, J. Oper. Theory 30 (1993), 85-108.
- [8] J. R. Lee and D. Y. Shin, The positivity of the linear functional on \mathcal{O}_n associated to unit vectors, preprint.
- [9] R. T. Powers, Representations of uniformly hyperfinite algebras and their associated von Neumann rings, Ann. Math. 86 (1967), 138-171.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SEOUL, SEOUL, 130-743, KOREA E-mail: dyshin@uos.ac.kr