NOTE ON GOOD IDEALS IN
GORENSTEIN LOCAL RINGS

MEE-KYOUNG KIM

ABSTRACT. Let I be an ideal in a Gorenstein local ring A with the maximal ideal m and $d = \dim A$. Then we say that I is a good ideal in A, if I contains a reduction $Q = (a_1, a_2, \cdots, a_d)$ generated by d elements in A and $G(I) = \oplus_{n \geq 0} I^n/I^{n+1}$ of I is a Gorenstein ring with $a(G(I)) = 1 - d$, where $a(G(I))$ denotes the a-invariant of $G(I)$. Let $S = A[Q/a_1]$ and $P = mS$. In this paper, we show that the following conditions are equivalent.

1. $I^2 = QI$ and $I = Q : I$.
2. $I^2S_a = a_1IS$ and $IS = a_1S : SIS$.
3. $I^2Sp = a_1ISp$ and $ISp = a_1Sp : SpISp$.

We denote by $\mathcal{X}_A(Q)$ the set of good ideals I in \mathcal{X}_A such that I contains Q as a reduction. As a Corollary of this result, we show that

$$I \in \mathcal{X}_A(Q) \iff ISp \in \mathcal{X}_S(Q_p).$$

1. Introduction

Let A be a Gorenstein local ring with the maximal ideal m and $d = \dim A$. Let I denote an m-primary ideal in A. Then we say that I is a good ideal in A if I contains a parameter ideal (c_1, c_2, \cdots, c_d) in A as a reduction and the associated graded ring $G(I) = \oplus_{n \geq 0} I^n/I^{n+1}$ of I is a Gorenstein ring with $a(G(I)) = 1 - d$ ([3]), where $a(G(I))$ denotes the a-invariant of $G(I)$ ([4], Definition 3.1.4)). We denote by \mathcal{X}_A the set of good ideals I in A. The concept of good ideals was first introduced by S. Goto, S. Iai, and K. Watanabe and they intensively studied m-primary
good ideals in a given Gorenstein local ring and gave many inspiring
results ([3]).

Let \(Q = (a_1, a_2, \cdots, a_d) \) be a fixed parameter ideal in \(A \). Let \(S = A[Q/a_1] \) and \(P = mS \). We denote by \(\mathcal{X}_A(Q) \) the set of good ideals \(I \) in \(\mathcal{X}_A \) such that \(I \) contains \(Q \) as a reduction. With this notation the main result of this paper is stated as follows.

Theorem 1.1. Let \(I (\neq A) \) be an ideal in \(A \). Suppose that \(I \) contains a parameter ideal \(Q = (a_1, \cdots, a_d) \) as a reduction. Then the following conditions are equivalent.

1. \(I^2 = QI \) and \(I = Q : I \).
2. \(I^2S = a_1IS \) and \(IS = a_1IS : SIS \).
3. \(I^2SP = a_1ISP \) and \(ISP = a_1SP : SISP \).

Corollary 1.2. Let \(I (\neq A) \) be an ideal in \(A \). Suppose that \(I \) contains a parameter ideal \(Q = (a_1, \cdots, a_d) \) as a reduction. Then the following conditions are equivalent.

1. \(I \in \mathcal{X}_A(Q) \).
2. \(ISP \in \mathcal{X}_{SP}(QS_P) \).

In what follows, let \((A, m)\) be a Gorenstein local ring and \(d = \dim A \). Let \(K = Q(A) \) be the total quotient ring of \(A \). We denote by \(\mu_A(*) \) the number of generators and \(\ell_A(*) \) the length.

Let \(B = \oplus_{n \in \mathbb{Z}} B_n \) be a Noetherian graded ring and assume that \(B \) contains a unique graded maximal ideal \(\mathfrak{M} \). We denote by \(H^i_{\mathfrak{M}}(*) \) \((i \in \mathbb{Z})\) the \(i \)th local cohomology functor of \(B \) with respect to \(\mathfrak{M} \). For each graded \(B \)-module \(E \) and \(n \in \mathbb{Z} \), let \(H^i_{\mathfrak{M}}(E)_n \) denote the homogeneous component of the graded \(B \)-module \(H^i_{\mathfrak{M}} \) of degree \(n \). Let \(E \) be a graded \(B \)-module. For each \(n \in \mathbb{Z} \) let \(E(n) \) stand for the graded \(B \)-module, whose underlying \(B \)-module coincides with that of \(E \) and whose graduation is given by \([E(n)]_i = E_{n+i} \) for all \(i \in \mathbb{Z} \). We refer the reader to [5], [1], or [6] for any unexplained notation or terminology.

2. Preliminaries

Let \((A, m)\) be a \(d \)-dimensional Gorenstein local ring with \(d \geq 2 \) and \(K = Q(A) \) be the total quotient ring of \(A \). Let \(Q = (a_1, \cdots, a_d) \) be a fixed parameter ideal for \(A \). Let \(S = A[Q/a_1](= \cup_{n \geq 0} Q^n/a_1^n) \) and
\[P = \mathfrak{m}S. \] Then \(A \subseteq S \subseteq K \) and we have the isomorphism

\[
S \cong \frac{A[T_2, T_3, \cdots, T_d]}{(a_1T_2 - a_2, a_1T_3 - a_3, \cdots, a_1T_d - a_d)},
\]

where \(T_2, T_3, \cdots, T_d \) denote indeterminates over \(A \). Hence \(S \) is a \(d \)-dimensional Gorenstein ring, since \(a_1T_2 - a_2, a_1T_3 - a_3, \cdots, a_1T_d - a_d \) is a regular sequence ([2]). Moreover \(P \) is a height 1 prime ideal of \(S \), because \(S/P \cong (A/m)[T_2, T_3, \cdots, T_d] \) is a \((d-1)\)-dimensional regular domain, whence \(S_P \) is a 1-dimensional Gorenstein local ring. For the proof of our result we need the following lemmas.

Lemma 2.1. Let \(I \neq A \) be an ideal in \(A \). Suppose that \(I \) contains \(Q \) as a reduction. Then

1. \(IS \) is a \(P \)-primary ideal in \(S \).
2. \(IS_P \cap A = I \).
3. \(IS \cap A = I \).
4. \(\ell_{S_P}(S_P/IS_P) = \ell_A(A/I) \) and \(\ell_{S_P}(S_P/QS_P) = \ell_A(A/Q) \).

Proof. Notice that \(QS = a_1S \) and \(\sqrt{QS} = \sqrt{IS} = P \).

1. \(S/IS \cong (A/I)[T_2, T_3, \cdots, T_d] \), since \(IA[T_2, T_3, \cdots, T_d] \supseteq (a_1T_2 - a_2, a_1T_3 - a_3, \cdots, a_1T_d - a_d) \). Hence \(\text{Ass}(S/IS) = \{\mathfrak{m}S\} \), because \(\text{Ass}(A[T_2, \cdots, T_d]/IA[T_2, \cdots, T_d]) = \{mA[T_2, \cdots, T_d]\} \). Thus \(IS \) is a \(P \)-primary ideal in \(S \).

2. \(IS_P \cap S = I \) by (1). Hence we have \(IS_P \cap A = (IS_P \cap S) \cap A = I \cap A = I \).

3. Let \(\alpha \in IS \cap A \) and write \(\alpha = \beta \frac{a_1}{a_1} \) with \(\beta \in I \) and \(g \in Q^\ell \) for some \(\ell \geq 0 \). Since \(\alpha \in A \), we get \(\omega a_1^\ell = \beta g \in IQ^\ell = I(a_1^\ell + (a_2, a_3, \cdots, a_d)Q^{\ell-1}) \). Now we write \(\omega a_1^\ell = \omega (a_1^\ell + f \sum_{i=2}^d x_ia_i) \) with \(\omega \in I, f \in Q^{\ell-1} \), and \(x_i \in A \) for \(i = 2, \cdots, d \). Then \(a_1^\ell (\alpha - \omega) = \omega f \sum_{i=2}^d x_ia_i \in (a_2, a_3, \cdots, a_d) \) so that \(\alpha - \omega \in (a_2, a_3, \cdots, a_d) : a_1^\ell = (a_2, a_3, \cdots, a_d) \), since \(a_1, a_2, \cdots, a_d \) is a regular sequence. Hence \(\alpha \in \omega + (a_2, a_3, \cdots, a_d) \in I \). The other inclusion is obvious and hence \(IS \cap A = I \).

4. We have the following isomorphisms

\[
\frac{S_P}{IS_P} \cong \left(\frac{A[T_2, T_3, \cdots, T_d]}{IA[T_2, T_3, \cdots, T_d]} \right) \frac{mA[T_2, T_3, \cdots, T_d]}{mA[T_2, T_3, \cdots, T_d]} \\
\cong \frac{A[T_2, T_3, \cdots, T_d]}{IA[T_2, T_3, \cdots, T_d] \frac{mA[T_2, T_3, \cdots, T_d]}{mA[T_2, T_3, \cdots, T_d]},}
\]
where \(mA[T_2,T_3,\ldots,T_d] = mA[T_2,T_3,\ldots,T_d] \). Hence \(\ell_{S_P}(S_P/IS_P) = \ell_A(A/I) \), because \(\text{Ass}_S(S/a_1S) \) is faithfully flat over \(A \). Similarly, we have \(\ell_{S_P}(S_P/QS_P) = \ell_A(A/Q) \). This completes the proof of Lemma (2.1). \(\square \)

Lemma 2.2. ([3], Proposition (2.2)) Let \(I \) be an \(m \)-primary ideal in \(A \) and assume that \(I \) contains \(Q \) as a reduction. Then the following conditions are equivalent.

1. \(I \in \mathcal{X}_A \).
2. \(I^2 = QI, I = Q : I \).
3. \(I^2 = QI, \ell_A(A/I) = \frac{1}{2}\ell_A(A/Q) \).
4. \(I^2 \subseteq Q^2 \) and \(I = Q : I \).
5. The algebra \(R'(I) = \oplus_{n \geq 0} I^n t^n \) is a Gorenstein ring and \(K_{R'(I)} \cong R'(I)(2 - d) \) as graded \(R'(I) \)-modules, where \(K_{R'(I)} \) denotes the canonical module of \(R'(I) \).

If \(d \geq 1 \), we may add the following.

6. \(I^n = Q^n : I \) for all \(n \in \mathbb{Z} \).

When this is the case, we have \(r(A/I) = \mu_A(I/Q) = \mu_A(I) - d + 1 \) and \(e_I(A) = 2\ell_A(A/I) \), where \(r(A/I) \) denotes the Cohen-Macaulay type of \(A/I \) and \(e_I(A) \) denotes the multiplicity of \(A \) with respect to \(I \).

3. **Proof of Theorem 1.1**

Proof of Theorem 1.1. (1)\(\Rightarrow \)(2) Since \(QS = a_1S \), we have \(I^2S = QIS = a_1IS \). Let \(f \in a_1S : SIS \) with \(f \in S \). Then \(fx \in a_1S \) with \(x \in I \) and write \(fx = a_1(Q^\ell/a_1^\ell) \) for some \(\ell \geq 0 \), since \(S = A[Q/a_1] = \bigcup_{n \geq 0} Q^n/a_1^n \). Since \(f \in S \), we have \(x = a_1^\ell h \) with \(h \in Q^u \) and \(g \in Q^\ell \) for some \(u \geq 0 \). We may assume that \(\ell = u \). Hence \(xh = a_1^\ell g \in Q^{\ell+1} \). Since \(x \in I \), we have \(h \in Q^{\ell+1} : I = I^{\ell+1} = Q^{\ell+1} \) by Lemma 2.2.(6), whence \(f = a_1^\ell \in I^{Q^\ell}/a_1^\ell \subseteq IS \). Thus \(IS = a_1S : SIS \).

(2)\(\Rightarrow \)(3) This is clear.

(3)\(\Rightarrow \)(2) Suppose that \(I^2S \not\subseteq a_1IS \). Then there exists a prime ideal \(p \in \text{Ass}_S(S/a_1IS) \) such that \(I^2S_p \not\subseteq a_1IS_p \). If \(p = P \), then \(I^2S_p = a_1IS_p \), which is impossible. Hence \(p \supsetneq P \), whence \(h_tsp \geq 2 \). We look at the exact sequences

\[
(*) \quad 0 \rightarrow (IS)_p \xrightarrow{a_1} S_p \rightarrow (S/a_1IS)_p \rightarrow 0,
\]
of S_p-modules. Apply functors $H_m^l(-)$ to (***) and we have $\text{depth}(IS)_p \geq 2$, because S_p is a Gorenstein local ring of $\dim S_p \geq 2$ and $\text{depth}(S/IS)_p \geq 1$, since $p \supseteq P$ and IS is a P-primary ideal. Now apply functors $H_m^l(-)$ to (*) and we have $\text{depth}(S/a_1IS)_p \geq 1$, when $p \notin \text{Ass}_S(S/a_1IS)$. This is impossible, because $p \in \text{Ass}_S(S/a_1IS)$ by our assumption. Thus $I^2S = a_1IS$. Suppose that $IS \subseteq a_1S :_S IS$. Then there exists a prime ideal $q \in \text{Ass}_S(S/IS)$ such that $IS_q \subseteq a_1S_q :_q IS_q$. Since $\text{Ass}_S(S/IS) = \{p\}$, we have $q = p$. This is a contradiction to our assumption. Hence $IS = a_1S :_S IS$.

(2)\Rightarrow(1) $I^2 \subseteq I^2S \cap A = a_1IS \cap A \subseteq a_1S \cap A = QS \cap A = Q$, by the similar reason of Lemma 2.1.(3). Hence $I \subseteq Q :_A I$. By Lemma 2.1 (3), we have

$$I = IS \cap A = (a_1S :_S IS) \cap A$$
$$\supseteq (Q :_A I)^{cc}$$
$$\supseteq Q :_A I.$$
where \(\alpha = (\alpha_1, \ldots, \alpha_d) | \alpha_1 + \cdots + \alpha_d = l \) and \(0 \leq \alpha_i \in I \). Then
\[
y^l = \sum c_\alpha (a_1 t)^{\alpha_1} (a_2 t)^{\alpha_2} \cdots (a_d t)^{\alpha_d},
\]
whence
\[
y^l = \sum c_\alpha t_1^{\alpha_1} t_2^{\alpha_2} \cdots t_d^{\alpha_d}
\]
and hence
\[
c_1 t_1^l + c_2 t_2^{l-1} t_1 + \cdots + c_d t_d^{l-1} = \sum c_\alpha t_1^{\alpha_1} t_2^{\alpha_2} \cdots t_d^{\alpha_d}.
\]

Thus we have \(c_i = c_{\alpha_i} \) for some \(\alpha = (\alpha_1, \ldots, \alpha_d). \) Since \(c_i \in A/Q \) and \(c_{\alpha_i} \in I/Q, \) we have \(c_i - c_{\alpha_i} \in Q, \) whence \(c_i \in c_{\alpha_i} + Q \subseteq I \) and hence
\[
x = \sum_{i=1}^d c_i a_i \in QI.
\]
Therefore \(I^2 = QI. \) This completes the proof of Theorem 1.1. \(\square \)

Proof of Corollary 1.2. Let \(I \) contain \(Q \) as a reduction. Hence \(I \) contains \(Q \) as a reduction if and only if \(IS_p \) contains \(QS_p \) as a reduction. Thus
\[
I \in \mathcal{X}_A(Q) \iff IS_p \in \mathcal{X}_S(QS_p)
\]
by Theorem 1.1. \(\square \)

References

Mee-Kyounge Kim, Department of Mathematics, Sungkyunkwan University, Jangangsu Suwon, 440-746 KOREA
E-mail: mkkim@math.skku.ac.kr