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MODIFIED INCOMPLETE CHOLESKY
FACTORIZATION PRECONDITIONERS FOR A
SYMMETRIC POSITIVE DEFINITE MATRIX

JAE HEON YUN AND YU Du HAN

ABSTRACT. We propose variants of the modified incomplete Cholesky
factorization preconditioner for a symmetric positive definite (SPD)
matrix. Spectral properties of these preconditioners are discussed,
and then numerical results of the preconditioned CG (PCG) method
using these preconditioners are provided to see the effectiveness of
the preconditioners.

1. Introduction

In this paper, we consider a linear system of equations
(1) Az = b, z,beR",

where A € R™" is a large sparse symmetric positive definite (SPD)
matrix. Since A is a large sparse matrix, direct methods such as Gauss-
ian elimination become prohibitively expensive because of a lot of fill-
in elements. As an alternative, the preconditioned CG (PCG) iterative
method [2] is widely used for the purpose of finding an approximate solu-
tion of the problem (1). Given an initial guess zg, the PCG method com-
putes iteratively new approximations zj to the true solution z*=A"1b.
The iterate zj is accepted as a solution if the residual rp, = b — Azi
satisfies ”ﬁ"bi”“f < tol.

The convergence rate and robustness of the PCG largely depend on
how well the preconditioner approximates A. One of the powerful pre-
conditioning methods in terms of reducing the number of iterations is
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the incomplete Cholesky factorization method studied by Meijerink and
van der Vorst [4] and Yun [8]. It was shown in [4] that for every zero
pattern set, there exists an incomplete Cholesky factorization of a sym-
metric M-matrix. However, the incomplete Cholesky factorization for a
symmetric positive definite matrix does not always exist. To this end,
Robert [7] introduced the modified incomplete Cholesky factorization
which exists for any symmetric positive definite matrix. The purpose
of this paper is to study variants of the modified incomplete Cholesky
factorization for a symmetric positive definite matrix. This paper is
organized as follows. In Section 2, we consider some properties of P-
regular splittings. In Section 3, we consider variants of the modified
incomplete Cholesky factorization. In Section 4, we provide numerical
results. In Section 5, some conclusions are drawn.

2. Properties of P-regular splitting

For two matrices A = (a;;) and B = (b;;), A < B denotes a;; < b;;
for all i and j, and A > B denotes a;; > b;; for all 4 and j. We
say that a real matrix A is monotone if Az > 0 implies x > 0. It is
well known that A is monotone if and only if A= > 0. A real square
matrix A = (a;;) is called an M-matriz if a;; < 0 for ¢ # j and it is
monotone. A real matrix A is positive definite (positive semi-definite)
if Re(z" Az) > 0 (Re(zf Az) > 0) for every nonzero vector z € C", or
equivalently 27 Az > 0 (z7 Az > 0) for every nonzero vector z € R™,
where Re(zH Az) refers to the real part of ¥ Az.

The spectral radius p(A) of a matrix A is p(4) = max{|A| | X €
o(A) }, where 0(A) denotes the spectrum of A, that is, the set of eigen-
values of A. A representation A = M — N is called a splitting of A when
M is nonsingular. A splitting A = M — N is a convergent splitting of A if
p(M~IN) < 1. Asplitting A = M — N is a P-reqular splitting if M + N
is positive definite. Obviously, the matrix M + N is positive definite if
and only if MT 4 N is positive definite. Throughout the paper, we use
the notation M > 0 (M > 0) for a matrix to be symmetric positive
definite (symmetric positive semi-definite), and M; > My (M; = M)
denotes that M; — My > 0 (My — My = 0).

THEOREM 2.1 ([3]). Let A be a symmetric matrix and let A= M —N
be a P-regular splitting of A. Then p( M~'N) < 1 if and only if A is
positive definite.
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THEOREM 2.2 ([5]). Let A > 0 and let A= M; — Ny = My — N3 be
two splittings of A. If 0 <= Ny < Ns, then

p(M{'N1) < p( M5 'N2) < 1.
If 0 < Ny < Ny, then
p(M'Ny) < p( My Np) < 1.

THEOREM 2.3 ([6]). Let A be a symmetric matrix and let A= M—N
be a splitting of A. If M > 0 and p(M~'N) < 1, then A is positive
definite and A= M — N is a P-regular splitting of A.

THEOREM 2.4. Let A = 0 and let A = M — N be a splitting of A
with N> 0. Then p(M™IN) < 1,0 < App-14 <1,and 0 < \pp1y <
1, where \j;—14 and A\y-15 denote eigenvalues of M—'A and M~ !N,
respectively.

Proof. Suppose that )X is an eigenvalue of M ~'N. Then there exists a
nonzero vector z such that M~ Nz = A\z. Thus, Nz = AMz. It follows
that

2Nz = AeH Mz = \a? Az + Az Nz,

Since A > 0 and A # 1, 28Nz = ﬁ zf Az. Since zH Az > 0 and

zHNz >0, ﬁ > 0. It follows that 0 < A < 1. Hence 0 < A\p—1y < 1
is proved. From M™YA = I — M~'N, A\pyy-14 = 1 — A\py-1n. Thus,
0 < Ap-14 < 1. For the proof of p(M~'N) < 1, N > 0 implies that
M = A+ N » 0. Hence, A= M — N is a P-regular splitting of A. From

Theorem 2.1, p(M~1N) < 1 is obtained. O

THEOREM 2.5. Suppose that A = 0. Let A= M — N be a splitting of
A with M symmetric. Then p(M~'N)<1lifandonlyif A=M— N
is a P-regular splitting.

Proof. Suppose that A = M — N is a P-regular splitting. Then by
Theorem 2.1, p(M~1N) < 1 is immediately obtained. For the proof of
the other direction, let’s suppose that p(M~'N) < 1. From the identity
M™1A =1 — M™IN, it can be seen that M~'A has eigenvalues with
positive real parts. Notice that M 1A is similar to AY/2M~1AY/2, Since
AY20M-1 AY/? ig symmetric, M~ A has real eigenvalues. It follows that
M~1A has positive eigenvalues. Hence, AY2M~1AY2 » 0, from which
M > 0. From Theorem 2.3, one obtains that A = M — N is a P-regular
splitting. O

THEOREM 2.6 ([1]). Let A > 0 and let A= M — N be a splitting of
A with M symmetric. Let B! = Zf;ol(M_lN)iM_l (k >1). Then
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(a) By is symmetric.

(b) For k odd, By is positive definite if and only if M is positive
definite.

(c) For k even, By, is positive definite if and only if M + N is positive
definite.

If the B defined in Theorem 2.6 is symmetric positive definite,
then it can be used as a preconditioner for the PCG method and it
is called k-step polynomial preconditioner corresponding to the splitting
A =M — N. It is easy to see that klim B;'=A"if p(M~IN) < 1.

ande o)

It is well-known that the convergence rate of the PCG method with a

preconditioner M for solving Az = b depends on how small %;11‘%)

is, where Apax (M1 A) and Apin (M~ A) denote the maximum and mini-
mum eigenvalues of M ~! A, respectively. More specifically, if A = M—N
is a splitting of A with M being SPD, then the convergence rate of the
PCG with the preconditioner M may depend on how small p(M~1N)
is. Thus, if p(M~IN) < 1 and M > 0 is easily invertible, then the M
may be considered as a good preconditioner for the PCG.

3. Modified incomplete Cholesky factorizations

Let P, = {(4,7) | ¢ # j,1 < 4,5 < n}. Then, it was shown in
[4] that for every symmetric zero pattern set Z C P, (ie. (i,5) € Z
implies (4,7) € Z), there exists an incomplete Cholesky factorization of a
symmetric M-matrix A such that A = UT DU~ R is a regular splitting of
A, where U is an upper triangular M-matrix and D is a diagonal matrix
whose ith diagonal element is an inverse of the ith diagonal element of
U.

It is clear that UT DU in the above factorization is positive definite
since D is positive definite. Thus, the UT DU obtained from the incom-
plete Cholesky factorization of a symmetric M-matrix can be used as a
preconditioner for the PCG method. However, next example shows that
the incomplete Cholesky factorization for a symmetric positive definite
matrix A which is not an M-matrix does not always exist. That is,
there exists a diagonal matrix D with a nonpositive diagonal element
such that A =UTDU — R.
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ExAMPLE 3.1. Let
1 -1 0 01
-1 3 04 O
0 04 108 2
0.1 0 2 397

Since all eigenvalues of A are positive, A > 0. It is clear that A is not
an M-matrix. For the zero pattern set Z = {(1,3),(2,4),(3,1),(4,2)},
the incomplete factorization of A such that A=UTDU — R is

1 0 0 0 1 0 0 0 0 0 0
-1 2 0 05 0 0 0 -0.1
Ut = 0 , D= 0 , R= 0
0 04 1 0 0 1 0 0 0 0 0
01 0 2 -0.04 0 0 -25 0 -061 0 0

Since D contains a negative diagonal element —25, U T DU is not positive

definite and hence it can not be used as a preconditioner of the PCG
iterative method. Also note that A = UTDU — R is not a regular
splitting of A.

The incomplete factorization of A proposed in [6] such that A =
UTDU — R requires that all diagonal elements of the matrix R are
zero. By suppressing this requirement, Robert [10] proposed a modified
incomplete Cholesky factorization which always exists for any symmetric
positive definite matrix A.

THEOREM 3.2 ([7]). Let A = 0. Then for every symmetric zero
pattern set Z C P, there exists a modified incomplete Cholesky factor-
ization of A such that A = UTDU — R, where U is an upper triangular
matrix with positive diagonal elements, D is a diagonal matrix whose
ith diagonal element is an inverse of the ith diagonal element of U, and
R is positive semi-definite.

The modified incomplete Cholesky factorization (MICF) in [7] is de-
scribed in a theoretical way, so the MICF algorithm which can be easily
implemented is provided below. Let a;; denote the (4,5) component of
A and let Z be a zero pattern set. Since A is symmetric, only the lower
triangular part of A is used and updated.

Algorithm 3.1 (MICF).
dy =1/an
Fori=2.n



500 Jae Heon Yun and Yu Du Han

For j=1i—1
For k=1i,n
ki = Qg; — Okj - Qij * d;
end
end
Fork=i+1,n
if (k,%) € Z, then
ai = Qi+ | ag; |
agk = O+ | ag; |

Af; = 0
end if
end
di =1 / (2773

end

From Algorithm 3.1, the modified incomplete Cholesky factorization
of the matrix A given in Example 3.1 such that A =UTDU — R is

1 0 0 0 1 0 0 0 0 0 0 0
21 10 1 1
uT=|"~ 1 %5 0 0 De 0 5 0 0 R 0 #H 0 —55
2 527 » 525 >
0 £ 55 0 60 0 5 0 0 0 0 0
1 1981 26350 1 1
10 0 26350 0 0 0 1981 U 10 0 10

Notice that the lower triangular matrix UT and the diagonal matrix D
are obtained directly from Algorithm 3.1, while the matrix R is com-
puted from the identity R = UTDU — A. Since we are only interested
in the matrix UT DU which can be used as a preconditioner of the PCG
method, all algorithms in this paper do not contain the computational
step for the matrix R. From now on, the UT DU > 0 obtained from
Algorithm 3.1 is called the MICF preconditioner.

Below we propose a variant of the modified incomplete Cholesky fac-
torization (VMICF) algorithm which is more efficient than Algorithm 3.1
(see Tables 1 and 3). This variant also yields a splitting A = UTDU — R
such that UTDU > 0 and R > 0. From now on, the UTDU » 0is called
the VMICF preconditioner.

Algorithm 3.2 (VMICF).

Fori=1,n
di = l/aii
Forj=i+1,n
dj =ajz~-di

end
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Forj=i+1,n
For k =4,n
if (k,j) € Z, then
Ugj = Qg5 — dk * Qg4
akk = gt | ak; |
aj; = a5+ | ak; |

Ay = 0
else
akj = akj — dk . aji
end if
end
end
end

The main difference between Algorithms 3.1 and 3.2 is as follows. At
the ith step, Algorithm 3.1 updates the ith column using the first (¢ — 1)
columns and then modifies diagonal elements according to a zero pattern
set Z, while Algorithm 3.2 updates the last (n — %) columns using the
ith column and then modifies diagonal elements according to the zero
pattern set Z. Here, we provide an example which shows the difference
between Algorithms 3.1 and 3.2.

EXAMPLE 3.3. Let

-1 -1 0 2

Let Z = {(1,2),(2,1),(3,4),(4,3)}. Since A is an irreducibly diag-
onally dominant matrix with positive diagonal elements, A > 0. From
Algorithm 3.1, one obtains A = UT DU — R with

4 0 0 0 1 0 00 00 0 0
0 0o 3 0 o 0 o0
Ut = (3) ’ » D= - » R= 00 1 1
-1 1 £ o0 00 %2 o0 00 : -3
-1 -1 0 3 0 0o o 2 00 -3 %
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From Algorithm 3.2, one obtains A = U7 HU — R with

4 0 00 i 0 00 00 0 0

. 0 2 0 . L0 o N 00 o0 0
vt = ° » D= 0z 1 » R= 3 1
-1 1 2 0 00 % o0 oo 3 -1

1 1 3

-1 -1 0 2 0o 0 o 1% o0 -1 3

The spectral condition numbers of A, UTDU, and UTDU are
ka(A) =|| A2 - || A7t |2~ 8.80781
ko(UTDU) =|| UTDU |2 - || (UTDU)! ||~ 5.8143
ko(UTDU) =|| UTDU |3 - || (OTDU)™! ||~ 4.8508.
It is easy to show that 0 < R < R. From Theorem 2.2, one obtains
p(UTDU)™'R) < p((UTDU)'R) < 1.
Note that direct calculations yield
p(UTDU)'R) =1/3
p((UTDUY'R) = 1/2.
Suppose that A = UTDU ~ R and A = UTDU — R are splittings of A
obtained from Algorithms 3.1 and 3.2, respectively. Since UTDU » 0,
UTDU = 0, R = 0 and R > 0, from Theorem 2.5 p((UTDU)"'R) < 1

and p((UTDU)™'R) < 1. In addition, Theorem 2.6 implies that for any
k>1

k-1
M=) ((UTDU)'R)Y(UTDU)!
=0
~ k_l A~ ~ A A~ . A A A
M7P=) (UTDO)R)HOTDO)
=0

are symmetric positive definite. Hence, the My and M, can be used as
preconditioners for the PCG method. The M}, and Mj, are called k-step
MICF and k-step VMICF polynomial preconditioners, respectively. No-
tice that for k = 1, the My, and M}, reduce to the standard MICF and
VMICF preconditioners, respectively. It can be shown that 0 < R < R
and thus p((UT DU)1R) < p((UTDU)~!R). From this point of view,
the MICF preconditioner obtained from Algorithm 3.1 may provide bet-
ter convergence rate of the PCG than the VMICF preconditioner ob-
tained from Algorithm 3.2. Numerical experiments in Section 4 show
that the convergence rate of the PCG with MICF preconditioner is as
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good as or slightly better than that with VMICF preconditioner, but
the construction time for MICF preconditioner is much larger than that
for VMICF preconditioner (see Tables 1 and 3). So, the VMICF is more
efficient preconditioner than the MICF on the Cray T3E supercomputer.

Next we consider other variants of the modified incomplete Choesky
factorization preconditioner. Let A be a symmetric positive definite 2 x 2
block matrix of the form

A
2) A:< : Cl>,
Cl A2

where A; and Aj are square matrices. Since A > 0, 4; > 0 amdc Ay = 0.
Thus, there exist modified incomplete Cholesky factorizations for A;
and AQ.

LEMMA 3.4. Suppose that A is a symmetric positive definite matrix

of the form (2). Then for every nonzero vector = (xl)
2

T Ayxy + 28 Agy + 20T CrLzy > 0

.’I){Alxl + l'g‘A2$2 - 2.’1}’{01:62 > 0.
Proof. Since A is a symmetric positive definite matrix of the form
A

(2), for any nonzero vector x =
T2

: - A C -z
—2T 214 xlz_T’T 1 1 1\ So.
(—x1,%3) <x2 (—1,73) C;f Ay -

Therefore, x}pAlml - 21:{01562 + mgAgasz > 0. Since

A
aT Az = («F, 21) 1 G (o > 0,
ClT A2 o

the second inequality is obtained. O

THEOREM 3.5. Suppose that A is a symmetric positive definite matrix
of the form (2). Let Ay = U{D1Ul ~ Ry and Ay = UF DUz — Ry be
splittings obtained from Algorithms 3.1 or 3.2. Let

g (U0 D— D; 0 U= Uy, (ULD) ¢y '
0 Uy 0 Do 0 Us



504 Jae Heon Yun and Yu Du Han
Let M =UTDU, M, =UIDU,, N=M — A, and N, = M, — A. Then
A=M -~ N and A = M, — N, are P-regular splitting of A.
Proof. Note that
DUy +R -C
MiN=2M-A=["1DH 1T+ o :
~Cf Us DUz + Ry

z
Let z = ( 1) be a nonzero vector. Then
T2

T (M + N)z = 2T (U DUy + Ry)zy + 28 (UT DoUs + Ry)ay — 227 Crazy
= 2eT Ryzy + 228 Ryxy + 2T Ay + 2T Agmy — 22T Crzy.

Since R; and Ry are positive semi-definite, Lemma 3.4 implies that
zT(M + N)x > 0. Hence, A = M — N is a P-regular splitting of A.
Next we will show that A = M, — N, is a P-regular splitting of A. Note
that

M,+N,=2M,— A
_ (UfDy G —A
cf  UI'DU + CFUTDy)"TDy(UT D) 1Ch

_ A1+ 2R, Ch
cf 20T WID,)TDy(ULD))~1Cy + Az + 2R, )
If we let Vi = (U{ D1)~1Cy, then

A1 + 2R, Ch )

( CT  2VID\Vi+ Ay + 2R,

Thus for each nonzero vector z, one obtains
zT(M, + Nz = 2T (A + 2R))z1 + 22T C2o
+ ¥ (Ag + 2Rg)x + 22T VI D1 Vi,
= w{Alxl + 2117{01.’52 + ngsz + 2xr{R1x1
+ 223 Roxy + 2T VI D1 Vizs.

By assumption, Ry > 0, Rs > 0 and D; > 0. Hence, Lemma 3.4 implies
that =7 (M, + N,)z > 0. It follows that A = M, — N, is a P-regular
splitting of A. O
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Since the two splittings A = M — N and A = M, — N, introduced in
Theorem 3.5 are P-regular splittings, from Theorem 2.1 p(M~!N) < 1
and p(M!N,) < 1. Hence, the M > 0 and M, > 0 can be used as
preconditioners for the PCG method. Theorem 2.6 also shows that

k—1 k—1
By =Y (MT'N)M~ and By =) (MTN,) M
i=0 1=0

are symmetric positive definite and thus they can be used as k-step
polynomial preconditioners for the PCG method. Below we provide an
efficient algorithm for computing B, 17 which is one of the basic time-
consuming computational kernels of the PCG, where r is a given vector.

Algorithm 3.3 (PRESOL(k)).

g = 0
Fori=1,k

T; = Ti—1 + M_l(T' — Aa:i_l)
end

From Algorithm 3.3, it can be seen that zy = B 1. Notice that
Algorithm 3.3 computes B 1y without using the matrix N. If we replace
M in Algorithm 3.3 with M,, then 3; ly is computed. Since U’s and
D;’s in Theorem 3.5 can be computed independently for different ¢, the
M and M, can be constructed in parallel based on matrix blocks. The
idea provided in Theorem 3.5 can be easily extended to a general m xm
block-tridigonal matrix A which is symmetric positive definite.

4. Numerical results

The test PDE problem we are considering in this paper is

(3) —(alz, Y)ux(z,y))e — (b=, Y)uy(z,y))y + c(z,v)ulz,y) = f(2,9)

with a(z,y) > 0, b(z,y) > 0, c(z,y) > 0, and (z,y) € Q, where Q2 is a
square region, and with suitable boundary conditions on 92 which de-
notes the boundary of 2. All numerical results have been obtained using
the PCG method. The MICF and VMICF preconditioners we have used
for numerical experiments were obtained without fill-ins. In all cases, the
PCG was started with an initial vector zg = 0 and it was stopped when
%< 10~8, where r; refers to the ith residual b — Az;. All numerical
experiments have been carried out using 64-bit arithmetic on the Cray
T3E at the KISTI supercomputing center. In Tables 1 to 4, ITER stands
for the number of iterations satisfying the stopping criterion mentioned
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above, Prec stands for the preconditioner to be used, P-time and I-time
stand for the CPU time required for constructing preconditioners and
the CPU time required for the PCG with these preconditioners, respec-
tively. All timing results are reported in seconds using one processor of
the Cray T3E. For all test problems, only the matrix A, which is con-
structed from five-point finite difference discretization of the given PDE,
is of importance, so the right-hand side vector b is created artificially.
Hence, the right-hand side function f in Examples 4.1 and 4.2 is not
relevant.

EXAMPLE 4.1. We consider Equation (3) over the square region Q =
(0,1) x (0,1) with a(z,y) = b(z,y) = cosz, c¢(z,y) = 0, and Dirichlet
boundary condition v = 0 on 9. That is, the following PDE problem
is considered:

—V . (coszVu) = f in Q,
u=0 on Of.

We have used two uniform meshes of Az = Ay = T(l)—l and Az = Ay =
Wll which lead to two matrices of order n = 100 x 100 and n = 200 x 200,
where Ax and Ay refer to the mesh sizes in the z-direction and y-
direction, respectively. We have used both the natural row-wise ordering
and the Red-Black ordering of the mesh grid. The matrix A generated
from this discretization is a symmetric M-matrix and hence it is also
a SPD matrix. To generate a SPD matrix which is not an M-matrix,
all off-diagonal elements of the matrix A are made positive by taking
their absolute values. Once the matrix A is constructed, the right-hand
side vector b is chosen so that the exact solution is the discretization of
10zy(1 — z)(1 — y)e*"’. Numerical results for this problem are listed in
Tables 1 and 2.

EXAMPLE 4.2. We consider Equation (3) over the square region Q =
(0,1) x (0,1) with a(z,y) = b(z,y) = 1, ¢(z,y) = 0, and Dirichlet
boundary condition © = 0 on 02. That is, the following PDE problem
is considered:

—Au=f in§,
u=20 on O0NQ2.

We have used the same uniform meshes as in Example 4.1. Once the
matrix A is constructed as in Example 4.1, the right—-hand side vector b
is chosen so that b= A[l,1,...,1]7. Numerical results for this problem
are listed in Tables 3 and 4.
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TABLE 1. Numerical results of the PCG for Example 4.1

Ordering n = 100 x 100 n = 200 X 200
(Matrix type) Prec ITER | P-Time | I-Time | ITER | P-Time | I-Time
Natural MICF 121 5.52 1.84 239 98.4 14.1

(M-matrix) | VMICF | 121 | 0.01 183 | 239 | 005 14.1
Red-Black | MICF | 142 | 6.61 198 | 268 | 1162 | 152
(M-matrix) | VMICF | 142 | o0.01 197 | 268 | 0.05 15.1
Natural MICF 6 5.52 0.10 4 98.4 0.26
(SPD matrix) | VMICF | 6 0.01 0.10 4 0.05 0.26
Red-Black | MICF | 128 | 6.67 179 | 235 | 1155 | 133
(SPD matrix) | VMICF | 134 | 0.01 1.87 | 250 | 0.05 14.1

TABLE 2. Numerical results of the PCG with k-step VMICF
polynomial preconditioner for Example 4.1

Ordering n = 100 x 100 n = 200 x 200

(Matrix type) | £ | ITER | P-Time | I-Time | ITER | P-Time | I-Time

1] 121 0.01 1.83 239 0.05 14.1

Natural 2 85 2.45 168 19.4

(M-matrix) | 3 68 2.89 136 23.1

4 59 3.31 118 26.5

1 0.01 0.10 4 0.05 0.26

Natural 2 0.09 3 0.37

(SPD matrix) | 3 0.09 2 0.36

4 0.12 2 0.47

1| 142 0.01 1.97 268 0.05 15.1

Red-Black 2| 154 4.08 255 27.8

(M-matrix) | 3| 135 529 | 258 415

4 122 6.32 233 49.5

1| 134 0.01 1.87 250 0.05 14.1

Red-Black 2| 103 2.74 195 21.3

(SPD matrix) | 3 86 3.38 161 25.9

4 75 3.89 140 29.8

5. Conclusions

The construction time of the MICF preconditioner is much larger
than that of the VMICF preconditioner, and the convergence rate of
the PCG with the MICF preconditioner is as good as or slightly better
than that with the VMICF preconditioner (see Tables 1 and 3). So, the
VMICF preconditioner is recommended for use on the Cray T3E.
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TABLE 3. Numerical results of the PCG for Example 4.2

Ordering n = 100 x 100 n = 200 x 200
(Matrix type) Prec ITER | P-Time | I-Time | ITER | P-Time | I-Time
Natural MICF 115 5.53 1.73 226 98.6 13.6

(M-matrix) [ VMICF | 115 0.01 1.72 226 0.05 13.7
Red-Black MICF 130 6.67 1.80 244 115.6 13.9
(M-matrix) | VMICF | 130 0.01 1.80 243 0.05 13.9
Natural MICF 6 5.53 0.09 4 98.7 0.26
(SPD matrix) | VMICF 6 0.01 0.09 4 0.05 0.26
Red-Black MICF 122 6.67 1.69 226 115.7 12.8
(SPD matrix) | VMICF | 123 0.01 1.71 225 0.05 12.8

TABLE 4. Numerical results of the PCG with k-step VMICF
polynomial preconditioner for Example 4.2

Ordering n =100 x 100 n = 200 x 200

(Matrix type) | k£ | ITER | P-Time | I-Time | ITER | P-Time | I-Time

1 115 0.01 1.72 226 0.05 13.7

Natural 2 81 2.33 159 18.4

(M-matrix) | 3 66 2.80 130 22.2

4 57 3.20 112 254

1 0.01 0.09 4 0.05 0.26

Natural 2 0.09 3 0.37

(SPD matrix) | 3 0.09 2 0.36

4 0.12 2 0.47

1 130 0.01 1.80 234 0.05 13.8

Red-Black 2 101 2.68 189 20.6

(M-matrix) | 3| 85 333 | 157 25.2

4 74 3.84 137 29.1

1 123 0.01 1.71 225 0.05 12.8

Red-Black 2 93 2.47 175 19.0

(SPD matrix) | 3 78 3.06 146 23.5

4 70 3.63 130 27.6

The PCG with k-step VMICF polynomial preconditioner reduces the
number of iterations as k increases (see Tables 2 and 4), but the com-
puting time of the PCG with k-step VMICF polynomial preconditioner
increases as k increases. This is because the reduction in the number of
iterations is not enough to balance the increase in the computing time
required for PRESOL(k). Notice that 1-step VMICF polynomial pre-
conditioner is the same as the VMICF preconditioner. Hence, k-step
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VMICF polynomial preconditioner is recommended on the Cray T3E
only for k = 1. That is, the PCG with VMICF preconditioner performs
efficiently on the Cray T3E.
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