HREE7} Y= B2x §E FEEC
HEFS 0 ChEH SxIsHA

Numerical Analysis of Shear Stresses in
Framed Tube Structures with Internal Tube(s)
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Abstract

A simple numerical modelling technique is proposed for estimating the shear stress distribution in beams of
framed tube structures with multiple internal tubes. The structures are analysed using a continuum approach in
which each tube is individually modelled by a tube beam that accounts for the flexural and shear deformations, as
well as the shear lag effects. The numerical analysis of shear stress is based on the mathematical analogy in
conjunction with the elastic theory. By simplifying assumptions regarding the form of strain distributions in external
and internal tubes, the shear stress distributions are expressed in terms of a series of linear functions of the second
moments of area of the structures and the corresponding geometric and material properties, as well as the applied
loads. Previous studies”” for axial stresses and shear lag phenomenon are further developed for the numerical
analysis of shear stresses in the tubes. The simplicity and accuracy of the proposed method are demonstrated
through the solutions of three numerical examples.

Keywords ' tube structures, continuum beam analogy, strain distribution, shear lag, unknown strain function
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1. Introduction

Modern highrise buildings of the framed-tube
system exhibit a considerable degree of shear-
lag with consequential loss of cantilever efficiency.
Despite this drawback, the framed-tube structures
are accepted as an economical system capable of
maximising the structural efficiency for highrise
buildings over a wide range of building heights.
In particular, the framed-tube structures with
multiple internal tubes, or tube(s)-in-tube struc-
tures, are widely used due to their high stiffness
in resisting lateral loads. In addition, this type
of structure shows a reduced shear-lag due to
the existence of the internal tubes, the columns
of which also participate more effectively in
resisting lateral forces.

Existing methods® ™ of modelling a framed
tube structure as equivalent orthotropic plate
panels with shear and bending rigidities are
not sufficient to capture the true behaviour of the
framed tube structure with multiple internal
tubes. These models for approximate analysis not
only ignore the contribution to lateral stiffness
provided by the internal tubes but also neglect
the negative shear lag effects and the tube-
tube interaction in the tubes. In addition, the
existence of the tube-tube interaction along
with the negative shear lags in the tubes makes
it difficult to estimate the structural performance
and the accurate analysis of such system. As
a result, they are inadequate in capturing the
true shear behaviour as well as the true bending
behaviour of such structures.

The proposed method, which is intended to be
used as a tool for preliminary design purposes,
can be applied for the shear stress analysis of
framed-tube structures with single and multiple
internal tubes as well as those without internal
tubes.

A series of framed tube structure with multiple
internal tubes subjected to lateral loading is
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analysed to verify the simplicity and accuracy of
the proposed method. Three 40-storey reinforced
concrete framed structures(of tube-in-tube, 2tubes-
in-tube and 3tubes-in-tube construction) are
analysed using the proposed method and a 3-D
frame analysis program.® The results are compared
to estimate the shear stress distribution in beams
of each tube. The shear stress distribution,
affected by the tube-tube interaction, explains
well the overall shear stress distributions in the
structures.

2. Analysis Method

2.1 Structural Modelling

The analytical method of the discrete tube
structure with multiple internal tubes was pro-
posed previously by Lee." The simplicity and
accuracy of the proposed method was verified
through the comparison of deflection and stress
distributions. The tubes-in-tube structure is
modelled as an assemblage of equivalent multiple
tubes of uniform thicknesses so that the framed
tubes can be analysed as continuous structures.

The discrete framed tube structure with multiple
internal tubes(2 in this case) composed of
equivalent multiple tubes is shown in Fig. 1.
All framed tubes under consideration consist of
an assemblage of equivalent orthotropic plates
of uniform thickness in vertical planes. The
high in-plane stiffness of the floor slabs restricts
the relative lateral displacements between
external tube and internal tubes, and it may
therefore be assumed negligible at each floor
level. The analogy method proposed herein has
the following characteristics: (1) The modified
Reissner’s functionl) is adopted for the in-
dependent distribution of vertical displacement
in the flange frame panels, thereby taking into
consideration the net shear lag: (2) the effect
of positive and negative shear lag in the external



and internal tubes is considered in assessing the
overall shear behaviour of the tubular structure:
(3) lateral stiffness provided by the internal
tubes is taken into the analysis: (4) additional
bending stresses, developed by he tube-tube
interaction, are also included in the numerical
analysis of the structure.

It is assumed that the stress of each member
in the structure can be expressed in terms of
a family of linear functions of its second moment
of area, member property and geometry of the
structure. As the procedure used in the proposed
method is an extension of the continuum beam
analogy, shape functions are the same as those
adopted in previous studies’? to describe the
variation of displacements in flange and web
frame panels of each tube. The shape functions
can be varied with change of the number of
bays and storeys.

The following assumption is added to the
previous assumptions to simplify the modelling
concept and the expressions in the analysis for
idealisation of the structure: The tubes-in-tube
structure has two horizontal axes of symmetry
(x and y), passing through the vertical axis
(z)(see Fig. 1). It is further assumed that the
strain distributions in the flange frame panels
of internal tubes are symmetrical about the
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Fig. 1 Equivalent Tube Structure with Muitiple(Two)
Internal Tubes

vertical central axis(z). As a result, the strain
distributions in the flange frame panels of internal
tubes are symmetrically equal in magnitude.
Assumptions analogous to this additional assump-
tion can be applied to all the framed tube
structure with different number of internal tubes.

The equilibrium equations for the flange
frame panel shown in Fig. 1 are

do, , Odr, oy
X +—az =0 and 3z +

ar,,

dy

=0 (1

The corresponding equilibrium equations for
the web frame panel shown in Fig. 1 are obtained
as

00, 0T,

n 00, 0T,
ox 0z

=0 and —52"+ 3¢ =0 (2)

Thus, the stress—strain relations of the ortho-
tropic plate elements are expressed as

6, =E e, + E 6,0 =Eyeyt Eney; 1= Gyt 7y
0:=FE.6,+ Er€s 0o = Er€ouF Er€,00:= Grr " e

(3

where E, and E,, are, respectively, the horizontal
and cross elasticity moduli in the flange frame
panel: E, and E.. are, respectively, the horizontal
and cross elasticity moduli in the web frame
panel: E, and E., are the vertical elasticity moduli
in the flange and web frame panels, respectively:
and 7, and 7,, are the shear moduli in the flange
and web frame panels, respectively. In Eq. (3),
the elasticity moduli, E,, and E,,, are assumed

to be negligible in nature.

2.2 Vertical displacements in the flange
and web frame panels

Figs. 2 and 3 show, respectively, the variations
of displacement distributions in the flange and
web frame panels. The structure behaves diffe-
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Fig. 2 Distribution of vertical displacement in the
web frame panel

rently from that predicted by the primary bending
theory, in that the distribution of stresses in
the flange frame panels is not uniform, and
that in the web frame panels is nonlinear. This
phenomenon is referred to as shear-lag. The
shear lag due to tube-tube interaction and the
flexibiliby of the spandrel beam causes the
variation of axial stress distributions along the
height of the structure. From Fig. 2. which
shows the distribution of axial stresses across
the flange frame, it can be seen that when the
degree of the shear lag varies along the height,
the distribution of the axial stresses in the
flange frame changes concave or convex. Similarly,
from Fig. 3, which shows the distribution of
axial stress across the web frame, it can be
also seen that when the degree of the shear
lag varies, the axial stresses near the centre
of the web significantly lag down or up in the
linear distribution.

For the displacement distributions in the
flange frames of framed-tube structures, the
displacement distributions across the width of
the flanges were approximated as second-order—
polynomial curves by Coull and Bose,” as weil
as Kwan." For the shear wall structures, the
displacement distributions were assumed as sscond-
order-polynomial curves by Coull and Abu El
Magdw‘, and as fourth-order-polynomial curves
by Kwan.? The shape functions adopted herein
are the modified Reissner’s functions.” Essentially,
the modification involves up-grading the dis-
placement functions from second-order polynomials
to third-order polynomials. The third-order-
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Uy {z,%)
Fig. 3 Distribution of vertical displacement in the
flange frame panel

polynomial curve, whose equation is given by
L \3
Uy (2,0 = [ 42+ (1~(4 ) Jun(2)] o)

is shown in Fig. 2.

Regarding the axial displacement distributions
in the web frame panels, most researchers ne-
glected the shear lag in the wehs and assumed
a linear distribution of axial displacement across
the width of the web excant Conll and Rpose®
and Kwan,” who assumed that the variations
of the axial displacements in the webs were
expressed as third-order-polynomial functions.
Recently, Kwan® also developed the displacement
functions from third-order polynomials to fifth-
order polynomials. However, the functions do
not take into account the negative shear-lag
as shown in Fig. 3. The shape function adopted
herein is a third-crder-polynomial curve, whose
equation is given by

Ug(z,x):[%X‘{’“(%”(%)3)’&2(2)} {5)
In Egs. (4) and (8), #;{(2z) and wu»(z) are shear
lag coefficients of the flange and web frames,
respectively, due to the shear deformation, and
the expressions can be found elsewhere{Lee 2001).
A pilot study of the proposed displacement

U2 indicates that they are adequate

functions
to cover the important characteristics of the
shear-lag phenomenon in assessing the global
behaviour of the framed-tube structures with

multiple internal tube. Consequently, the proposed



numerical method explains well the deflection
and stress distributions, affected by shear lag
phenomenon, in such structures.

The methodology of modelling the anticipated
distribution of shear strain as affected by the
shear-lag in the web and flange panels is pre-
sented in the following sections.

2.3 Shear strains

Fig. 4 shows the shear strains in the external
web and flange frame panels. The shear strain
expressions are given as

_ ow aU,(z, x)

72T "4, E for web frame panel
and (6)
72=M+M for flange frame panel
k6 oy 0z
iz U/(zy)
w 4—T 1% 4—J
sz o ’sz F_
f * Idz * Idz
fe— fe—>1
dx dy

(a) Web frame panel (b) Flange frame panel

Fig. 4 Shear strain diagrams in the external web
and flange frame panels

where
G g
S o oo

aU(z,3) 3¢ 2
—————lay = bc(%) u(2)

Note that the displacement normal to the
lateral load, v, can be neglected,  is the rotation

of the plane section joining the four corners of
the external tube, and #,(2) and «.(2) are the
undetermined functions, including shear-lag coeffi-
cients, of the external flange and web, respectively

Likewise, the shear strains in the internal
tube can be obtained as

__(M_,_ BUl-z(z,x)
Ve = 82 ax

and (7
_9Ualz,9) | ovi
Yyai = ay 0z
L 0Up(z%) _[dw, 1 x\?
where; — 5~ —[ =T ci(l—B( Ci) )uiZ(Z)J

. . 3
; &;;sz—) :—%(—g—> u ;; and the displace-

ment of the internal flange frame panel, v;, is
also neglected.

2.4 Undetermined strain functions

Fig. 5 shows a typical cross section of the
equivalent tubes-in—tube structure. The second
moment of the entire tubes-in-tube system with
regard to the y-axis is

I=1+1, (8)

where I, and I; are the second moments of
area of the external and multiple internal tubes,
respectively, and

I.= —g— P (3b+ ) +4A. P

1= —%Nt,»c?({ibﬂr ;) FANA 4

in which N is number of internal tubes; ¢ and
t; are respectively the equivalent orthotropic
panel thicknesses in the external and internal
tubes: and A, and A, are the cross-sectional
areas of the corner column in the external and
internal tubes, respectively.
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Fig. 5 Typical cross section of equivalent tubes-
in—tube structure

The equilibrium equation of the overall moment
at any height is

b 4
M(z)=2 f_ bEEthcdy+ 2 f_ Ee txdc+4A4,FPEe,
2 bi
+ mz=12mf—biE62if tz‘ C; dy

+2mfrl EeyptixdetamAy E Ee,;  (9)

where ¢, and ¢, are respectively the corner
column strains in the external and internal
tubes: e, and e, are respectively the strains
in the external flange and web frame panels;
and e, and &, are respectively the strains in
the internal flange and web frame panels. The
strain functions are obtained by differentiating
the vertical displacement distributions with respect
to z.

Substituting the strain distributions into
Eq. (9) and integrating with respect to z yields

u'2(2)=—%u’1(z) for external tubes (10a)
and

u p(z)=— 458bi u ;4(z) for multiple internal
tubes (10b)

As a result of Eq. (10), the vertical strain
distributions can then be simply expressed in
terms of the only two undetermined strain
functions, #,(2) and wu;(2). including the effects
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of shear lag. The two unknown functions can
also be obtained on the basis of the potential
energy principle in conjunction with the variational
approach and those are given in previous study.”

T can be derived from the second expression
of Eq. (2). Or,

%% - %"i (11)
where the expression of o, is available elsewhere
(Lee 2001).

Integrating Eq. (11) with respect to x and
considering the boundary conditions” yield the
shear stress expression as

Ty = OX

M) ¢ gy (2T (2

c

+ o H) + gAML (12)

where @, 8, v and ¥ are the constants to be
determined according to the geometric and struc-
tural properties conditions: P(H) is the external
shear force in the lowest level of the whole
tube(s)-in-tube system: I is the second moment
of area of the structure: and M(z) is the total
bending moment of the structure induced by
the applied load.

The second expression of Eq. (6) is the shear
strain equation for the flange frame panel of
the external tube. Multiplying it by the shear
modulus( G) yields the shear stress as

Ty = G[*%C‘(%)Zul(Z)] (13)

The shear forces in the beams at positions
x; and y; are

.. dz for the web frame (14a)
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where #/2 is the mid-height of column measured
from the centreline of floor; and ¢ and ¢ are
the thicknesses” of the orthotropic plate in the
external and internal tubes respectively.

A manner analogous to those for the shear
force distribution in the external tube can also
be applied to the internal tube.

Note that the shear stress of each structural
member can be expressed in terms of a series
of linear functions by its second moment of
area, the corresponding geometric and material
properties and the applied loads. The shear
stress functions are able to describe the variation
of stress distributions in the flange and web
frame panels of each tube. Further, the shear
stresses are the functions of z, i.e. the coordi-
nate along the height of the structure.

3. Comparison of Results

A series of framed tube structure with multiple
internal tubes subjected to lateral loading is

30m

7.5m

» X

(a) Tube-in-tube structure

Sm

(b) 2 tubes-in-tube structure

analysed to verify the simplicity and accuracy
of the proposed method in the shear stress
distributions. Three 40-story tube(s)-in-tube
structures consisting of horizontal beams and
vertical columns are analysed by a 3-D frame
analysis,” and the structures idealized as a tube
assemblage of the vertical equivalent frame panels
are also analysed using the proposed method.
The results are compared to estimate the shear
stress distribution in each tube.

Each building has a 3.0m story height, 2.5m
centre-to-centre column spacing and a uniformly
distributed lateral load along the entire height
of the structure. The cross-sectional area of all
the columns and beams in the external tube of
the example structures is taken to be 0.64m?
and Young's modulus E and shear modulus G
are equal to 2.06X10'°N/m’® and 0.824%10'°N/m,
respectively. The second moment of area of the
internal tube of each the example structures is
taken to be 90m®. In order to consider the critical
case of the structures, a uniformly distributed
lateral load of 88.24KN/m is assumed to be
applied to long side frame panel(flange frame
panel) parallel to y-axis(see Fig. 6). The data of
the example structures is summarised in Table 1.
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Fig. 6 Plans of the three tube(s)-in-tube structures
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Table 1 Data for Example Structures

internal tube

Tube structure with one

Tube structure with three
internal tubes

Tube structure with two
internal tubes

Column & Beam Size of

External Tube 80cmx80cm
COl:fH;EtinifatrEbilze 91lem X 91em 80cm X 80cm T2cmX72cm
External Tube Size 30mXx 15m(12bays by 6bays)
Internal Tube Size 15m X 5m 2 - 7.5mX5m 3 - bmX5m
(6bays by 2bays) (2-3bays by 2bays) (3-2bays by 2bays)
Lateral Load 88.24kN/m
Total Story Height 120m

Fig. 7 shows the shear stresses and forces in
the beams of the three tube(s)-in-tube structures.
It is observed that the predicted beam shear
stresses along the structural height and the
forces along the flange and web panels agree
fairly well with the 3-D frame analysis results.
Note that the maximum shear stress occurs in
the web frame panel. The centre beam shear
stress distribution in the web frame panel obtained
by the proposed method is more linear, whereas
the 3-D frame analysis program shows nonlinear
distribution of the shear stress(see Fig. 7). It
is further found that the maximum shear stress
due to the proposed method occurs in the first
floor, and that due to the 3-D frame analysis
program occurs in the sixth floor. In order to
find out the maximum errors between the predicted
regults and the 3-D frame analysis results,
the maximum beam shear stresses in the first
and the sixth storeys of the three structures,
and those of the entire system of each structure,
are compared in Table 2.

In any comparison of the deflection and the
member stresses in a structure, the errors
between the results by a preliminary analysis
and these by all commercial program analysis
are generally expected to be within about 16
%3), 4). Thus the proposed method yields
good results for the shear stresses for all three
tube(s)-in-tube structures as shown in Fig. 7.
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This implies that the proposed method is
capable of satisfactorily predicting the struc-
tural behaviour in the shear stresses as well
as the bending stresses verified in previously
study(1).

4. Conclusion

A simple mathematical model is proposed
for the approximate shear stress analysis of
the framed tube structure with multiple internal
tubes. The numerical analysis of shear stress is
based on the mathematical analogy in conjunction
with the elastic theory. The net shear lag
effects and the lateral stiffness of the internal
tube are taken into consideration to estimate
the shear stresses in the tubes-in-tube structures.
In comparison with the 3-D frame analysis
program, the only other approach available for
the tubes-in-tube system, the proposed method
provides similarly accurate results in predicting
the shear stress distributions in the tubes of
the framed-tube structures. In view of its sim-
plicity. it is worth mentioning that the proposed
method requires minimal data preparation effort,
and for analysis, the personal computer running
time is absolutely negligible when compared
with the 3-D frame analysis program. Thus the
proposed method is considered to be a suitable
design tool to evaluate the shear stress distri-
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Fig. 7 Shear stresses and forces in beams of the three tube(s)-in-tube structures
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Fig. 7. Shear stresses and forces in beams of the three tube(s)-in-tube structures(continue)

Table 2 Comparison of the maximum beam shear stresses in the web frame panels of the three tube(s)
-in-tube structures

Maximum shear stress(kN/m?)
Structures Entire system Selected stories
ETABS Proposed ‘o ) ETABS Proposed ‘o
(1989)] method Brror(%)|  Storey (1989) method Brror™(%)
1% 1225.8 1181.9 3.5
Tube~-in-tube 1283.8 1181.9
6™ 1283.8 1162.5 9.44
1* 1150.0 1191.9 3.6
2 tubes-in-tube 1215.3 1191.9
6= 1215.3 1131.5 6.89
1™ 1150.0 1200.3 4.3
3 tubes-in-tube 1183.8 1200.3
6" 1183.8 1118.2 5.54‘J

Note : # =| Proposed method - 3D frame analysis (ETABS)

3-D frame analysis

butions in framed tube structures, particularly
at the preliminary stages where numerous analysis
iterations need to be carried out.
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