Growth and structural characterization of ZnO thin film on silicon substrate by MOCVD method

실리콘 기판상의 ZnO 박막의 성장 및 구조적 특성

  • 김광식 (인하대학교 재료공학부) ;
  • 이정호 (인하대학교 재료공학부) ;
  • 김현우 (인하대학교 재료공학부)
  • Published : 2002.06.01

Abstract

Highly-oriented ZnO thin films has been successfully deposited on Si(100) by metal organic chemical vapor deposition(MOCVD) at $250^{\circ}C$~$400^{\circ}C$ We report on the structural properties of ZnO thin film at various temperatures and at various ratios of the he and $O_2$ gas flow rates. The crystallinity of the thin films was improved and the surface smoothness decreased with the increase of the growth temperature. In x-ray diffraction analysis with respect to ZnO(0002) peak, the full width at half maximum (FWHM) of $0.4^{\circ}$ was achieved at $400^{\circ}C$.

유기금속화학기상증착방법 (metal-organic chemical vapor deposition : MOCVD)을 이용하여 실리콘 (100) 기판위엔 ZnO막을 증착하였다. 공정온도 ($250^{\circ}C$~$400^{\circ}C$)와 Ar과 $O_2$가스의 유량 비 변화에 따른 ZnO막의 특성변화를 조사하였다. 막의 결정성은 공정온도가 증가함에 따라 향상되었으며 $400^{\circ}C$에서 $0.4^{\circ}$의 반치폭(full width at half maximum : FWHM)을 얻었다. 공정온도 변화에 따른 표면 평활도(surface smoothness)변화는 결정성과 반대의 경향성을 보였다.

Keywords

References

  1. J. Appl. Phys. v.86 X. W. Sun;H. S. Kwok https://doi.org/10.1063/1.370744
  2. J. Appl. Phys. v.74 M. Joseph;H. Tabata;T. Kawai
  3. Mater. Chem. and Phys. v.72 Y. M. Lu;W. S. Hwang;W. Y. Liu;J. S. Yang https://doi.org/10.1016/S0254-0584(01)00450-3
  4. Appl. Surface Science v.112 Akira Yamada;Baosheng Sang;Makoto Konagai https://doi.org/10.1016/S0169-4332(96)01022-7
  5. J. Cryst. Growth v.214;215 K. Iwata;P. Fons;S. Niki;A. Yamada;K. Matusubara;K. Nakahara;T. Tanabe;H. Takasu
  6. Mater. Science in Semiconductor Processing v.2 N. W. Emanetoglu;C. Gorla;Y. Liu;S. Liang;Y. Lu https://doi.org/10.1016/S1369-8001(99)00022-0
  7. Appl. Phys. Lett. v.79 B. P. Zhang;Y. Segawa https://doi.org/10.1063/1.1426255
  8. Thin Solid Films v.350 F. Paraguay D.;W. Estrada L.;D. R. Acosta N.;E. Andrade;M. Miki-Yoshida https://doi.org/10.1016/S0040-6090(99)00050-4
  9. J. Cryst. Growth v.226 Xinqiang Wang;Shuren Yang;Jinzhong Wang;Mingtao Li;Xiuying Jiang;Guotong Du;Xiang Liu;R.P.H. Chang https://doi.org/10.1016/S0022-0248(01)01367-7
  10. J. Phys. and Chem. Solids v.62 T. W. Kim;D. U. Lee;D. C. Choo https://doi.org/10.1016/S0022-3697(00)00294-8
  11. J. Cryst. Growth v.212 T. W. Kim;Y. S. Yoon https://doi.org/10.1016/S0022-0248(00)00242-6
  12. J. Cryst. Growth v.214;215 A. Miyake;H. Kominami;H. Tasuka;H. Kuwabara;Y. Nakanishi;Y. Hantanka
  13. Thin Solid Films v.347 K. Matsubara;P. Fons;A. Yamada;M. Wantanabe;S. Niki https://doi.org/10.1016/S0040-6090(99)00037-1
  14. J. Cryst. Growth v.225 S. Muthukumar;C. R. Gorla;N. W. Emanetoglu;S. Liang;Y. Lu https://doi.org/10.1016/S0022-0248(01)00874-0
  15. Thin Solid Film v.353 Won Taeg Lim;Chang Hyo Lee https://doi.org/10.1016/S0040-6090(99)00390-9
  16. M. S. Thesis M.I.T. Z. H. Zhou
  17. J. Appl. Phys. v.80 Shunichi Hayamizu;Hitoshi Tabata;Hidekazu Tanaka;Tomoji Kawai https://doi.org/10.1063/1.362887
  18. J. Cryst. Growh v.225 S. Muthukumar;C. R. Gorla;N. W. Emanetoglu;S. Liang;Y. Lu https://doi.org/10.1016/S0022-0248(01)00874-0
  19. Thin Solid Films v.392 R. Groenen;J. Loffler;P. M. Sommeling;J.L. Linden;E.A.G. Harners;R.E.I. Schropp;M.C.M. van de Sanden https://doi.org/10.1016/S0040-6090(01)01032-X