DOI QR코드

DOI QR Code

Isolation and Characterization of Pretense Producing Bacteria from Soil

토양으로부터 Protease 생산 세균의 분리 및 특성

  • 김관필 (경북대학교 식품공학과) ;
  • 이창호 (경북대학교 식품공학과) ;
  • 우철주 (경북대학교 식품공학과) ;
  • 김남형 (건국대학교 응용생물화학과) ;
  • 배동호 (건국대학교 응용생물화학과)
  • Published : 2002.10.01

Abstract

In order to develope a new pretense applicable to industries, a bacterium which produces a remarkable amount of extracellular pretense were isolated from soil. About 10 bacterial strains producing pretense were isolated from samples of soil, and strain PANH765 showed the highest activity of pretense production among them. The strain was identified as Bacillus subtilis according to the Bergey's Manual of Systematic Bacteriology based on its morphological, cultural and physiological characteristics. B. subtilis PANH765 showed the maximal production of pro-tease in the medium containing 2.0% glucose, 1.0% yeast extract, 0.2% ammonium nitrate, 0.02% ferrous sulfate and 0.02% dipotassium hydrogen phosphate. Under the optimal condition with temperature of 3$0^{\circ}C$, initial pH of 7.0 and shaking speed of 150 rpm, the pretense production reached a maximum level with 36 hr cultivation (6.34 U).

공업적으로 광범위하게 이용되고 있는 protease 중 중성 영역에서 최적의 활성을 갖는 중성 protease에 대한 연구의 일환으로, 토양으로부터 protease의 생성능이 우수한 10여 균주를 순수 분리하였으며, 이들 중에서 protease의 활성 이 가장 우수한 PANH765를 최종 선별하였다. 이 균주의 형태학적, 배양학적, 생리학적 및 생화학적 특성을 조사하여 Bergey의 세균 분류서의 색인에 따라 체계적으로 분류한 결과, Bacilius subtilis 또는 그 유연균으로 동정되어 분리균을 Bacilius .Subtilis PA-NH765로 동정하였다. B. subtilis PANH-765 균주에 의한 protease의 최적 배지 조성은 2.0% glucose, 1.0% yeast extract, 0.2% ammonium nitrate, 0.02% ferrous sulfate 및 0.02% di-potassium hydrogen phosphate이었으며, 최적 생산 조건은 배양온도 ,3$0^{\circ}C$, pH 7.0, 진탕 속도 150 rpm이었다. 이 조건에서 초기 균체량을5%(w/v)접종하여 배양하였을 때 시간에 따른 효소의 최대 활성은 배양 ,36시간일 때 6.34 U이었다.

Keywords

References

  1. Appel W. 1970. Methods of enzymatic analysis. In Peptidase. Bergmeyer HU, ed. Verlag Chemie Weinheim, Academic press, New York. p 949-989.
  2. Neurath H. 1989. The diversity of proteolytic enzymes. In Proteolytic enzymes a practical approach. Beynon RJ, Bond JS, eds. IRL press, Oxford. p 1-13.
  3. Godfrey T, Reichelt J. 1983. Industrial enzymology. The application of enzymes in industry. The Nature Press. p 127-172.
  4. Hamamoto T, Horikoshi K. 1992. Alkaliphiles. In Encyclopedia of microbiology. Lederberg J, ed. Academic press, London. p 81-87.
  5. Impoolsup A, Bhumiratana A, Flegel TW. 1981. Isolation of alkaline and neutral proteases form Asperillus flavus var, columnaris, a soy sauce koji mold. Appl Environ Microbiol 42:619-628.
  6. Horikoshi K. 1971. Production of alkaline enzymes by alkalophilic microorganisms, Part I, alkaline proteinase produced by Bacillus No. 221. Agr Biol Chem 35: 1407-1414. https://doi.org/10.1271/bbb1961.35.1407
  7. Mizusawa K, Ichishima E, Yoshida F. 1964. Studies on the proteolytic enzymes of thermophilic Streptomyces. Agric Biol Chem 28: 884-895. https://doi.org/10.1271/bbb1961.28.884
  8. Nakanishi T, Matsumura Y, Minamura N, Minamiura N, Yamamoto T. 1974. Purification and some properties of an alkalophilic aroteinase of a Streptomyces sp. Agric Biol Chem 38: 37-44. https://doi.org/10.1271/bbb1961.38.37
  9. Meussdoerffer F, Tortora P, Holzer H. 1980. Purification and properties of proteinase A from yeast. J Biol Chem 255: 12087-12093.
  10. Rhden AC, Lindberg M, Philipson L. 1973. Isolation and characterization of two proteaseproducing mutants from Staphylococcus aureus. J Bacteriol 116: 25-32.
  11. Chandrasekaran S, Dhar SC. 1983. A low-cost method for the production of extracellular alkaline proteinase using Tapicca starch. J Ferment Technol 61: 511-514.
  12. Hare P, Scott-Burden T, Woods DR. 1983. Characterization of extracellular alkaline proteases and collagenase. J General Microbiology 129: 1141-1147.
  13. Long S, Mothibeli MA, Robb FT, Woods DR. 1981. Regulation of extracellular alkaline protease activity by histidine in a collagenolytic Vibrio alginolyticus strain. J General Microbiology 127: 193-199.
  14. Aronson AI, Angelo N, Holt SC. 1971. Regulation of extracellular protease production in Bacillus cereus T: Characterization of mutants producing altered amounts of protease. J Bacteriol 106: 1016-1025.
  15. John GH, Noel RK, Peter HAS, James TS, Stanely TW. 1994. Bergey's Manual Systematic Bacteriology. 9th ed.
  16. Hull ME. 1974. Studies on milk proteins II. Colorimetric determination of the partial hydrolysis of the proteins in milk. J Dairy Sci 30: 881-884. https://doi.org/10.3168/jds.S0022-0302(47)92412-0
  17. Kang KH, Bae IH, Lee CH. 1987. Stuidies on extracellular protease from Saccharomycopsis lipolyticaconditions of enzyme production. Kor J Appl Microbiol Bioeng 15: 279-285.
  18. Yun SW, Lee KP, Yu JH, Shin CS, Oh DH. 1989. Purification and properties of alkaline protease from Streptomyces sp. YSA-130. Kor J Appl Microbiol Bioeng 17: 358-364.

Cited by

  1. Isolation and Characterization of Protease Producing B. amyloliquefaciens JH-35 from Food Waste vol.35, pp.4, 2016, https://doi.org/10.5338/KJEA.2016.35.4.40
  2. Screening of Non-Biogenic-Amine-Producing Bacillus subtilis and Medium Optimization for Improving Biomass by the Response Surface Methodology vol.26, pp.5, 2016, https://doi.org/10.5352/JLS.2016.26.5.571
  3. Use of protease produced byBacillus sp. SJ-121 for improvement of dyeing quality in wool and silk vol.10, pp.3, 2005, https://doi.org/10.1007/BF02932011
  4. Isolation of Protease Producing Microorganisms vol.36, pp.4, 2014, https://doi.org/10.4491/KSEE.2014.36.4.265
  5. 호알칼리성 Bacillus sp. DK1122 균주가 생산하는 알칼리성 단백질 분해효소의 정제 및 특성 vol.44, pp.3, 2002, https://doi.org/10.4014/mbl.1606.06002
  6. 된장으로부터 분리한 Bacillus subtilis CK-2가 생산하는 가수분해효소의 활성 특성 vol.27, pp.7, 2002, https://doi.org/10.5352/jls.2017.27.7.805