DOI QR코드

DOI QR Code

Dietary Effects of Fiber Produced from G\ulcorneruconocacetobacter hansenii on Digestive Tract and Lipid Metabolism in Rats

Gluconoacetobacter hansenii에 의해 생산된 섬유소 섭취가 흰쥐의 소화기관과 지질대사에 미치는 영향

  • 조성희 (대구가톨릭대학교 식품영양학과) ;
  • 이지연 (대구가톨릭대학교 식품영양학과) ;
  • 최경호 (대구가톨릭대학교 식품영양학과) ;
  • 최영선 (대구대학교 식품영양학과)
  • Published : 2002.10.01

Abstract

This study was conducted to see effects of dietary bacterial fiber produced by Gluconoucetobacter hansenii on gross structure, and disaccharidase activities of small intestine and body lipid status in rats. Bacterial fiber was prepared by drying and alkali treatment of floating membrane produced IS days after the bacterial culture using coconut juice media. Male Sprague-Dawely rats of 320+10 g were grouped into three and fed 0.5% (w/w) cholesterol diets with three different dietary fibers, i .e. cellulose, and pectin and bacterial fiber, at the level of 2% (w/w). During four-week experimental period, food intakes and body weight gains were not different among three groups. Total lengths and jejunal fragment weights of small intestine did not differ among the three groups but cecal weight was higher in bacterial fiber groups than those of the other two groups. Colon content and fecal dry weight were lower in bacterial fiber group. Sucrase activity of the jejunal mucosa was lower in bacterial fiber group but maltase activity was not different from those of the other two groups. Plasma total cholesterol level was lower and that of HDL-cholesterol higher in pectin group than those of cellulose and bacterial fiber groups, the latter of which did not differ. Both in plasma and liver triglyceride levels were lower in bacterial fiber group than cellulose and pectin groups, and liver cholesterol level was lower in pectin group. Relative liver weights and Plasma activities of GOT md GPT were not different among three groups. It is concluded that bacterial fiber used in the present study had hypotriglyceridemic effect that help improve lipid status in the body.

본 실험은 초산균인 Glwonncetobacter hansenii에 의해 코코넛 배지에서 생성된 막인 bacterial fiber가 흰쥐의 장 전반과 소장의 이당류 효소활성 및 체내 지질상태에 미치는 영 향을 조사하였다. 이를 위하여 흰쥐를 0.5% 콜레스테롤 식이로 사육하였으며 섬유소원으로 bacterial fiber를 식이의 2%로 첨가 하였으며, 효과를 비교할 실험군들에게는 섬유소원으로 식물성 cellulose와 pectin을 같은 수준으로 식이에 첨가하여 사육 하였다. 실험 4주간 동안 식이섭취량 및 체중 증가량은 세군간에 차이가 없었다. 소장의 길이, 무게 등은 군간에 유의적인 차이는 없었으나 소장점 막 sucrase활성이 bacterial fiber군에서 감소하였고, maltase 활성도 감소하는 경향이었다. 맹장의 무게가 bacterial fiber군에서 증가하였으나, 결장의 무게에는 영향이 없었고, 결장 내용물 및 건조분변량이 감소하였다 혈장 총 콜레스테롤 농도는 세군중에서 pectin군이 유의적으로 낮았고 HDL-콜레스테롤 함량은 반대로 pectin군에서 높았다. 혈장과 간조직의 중성지방 함량은 모두 bacterial fiber군에서 다른 군들에 비하여 유의적으로 낮았다. 간조직 콜레스테롤 함량은 pectin군에서 낮았다. 간조직의 상대적 무게는 군간에 차이가 없었고, 혈장 GOT 및 GPT 활성도 bacterial fiber군에서 다른 두 군에 비하여 차이가 없었다. 본 연구의 결과, 실험에서 사용한 bacterial fiber는 체내의 중성지방 수준을 낮추어 지질 상태를 개선 할 수 있는 가능성을 보여 주어 이에 대한 기전과 이 작용의 활용에 대한 연구가 요망된다. 본 실험에서는 콜레스테롤 및 소장의 구조와 소화효소에는 큰 영향을 주지 않았으나 사용하는 섬유소의 수준을 보다 높이거나 다른 섬유소와 복합적으로 사용하는 경우, 또 동물의 나이에 따라 다른 결과가 도출될 수도 있으리라고 사료되어 앞으로의 지속적인 연구가 필요하다.

Keywords

References

  1. Benziman M, Haigler CH, Brown Jr RM, White AR, Cooper KM. 1980. Cellulose biogenesis: polymerization and crystallization are coupled processes in Acetobacter xylinum. Proc Natl Acad Aci USA 77: 6678-6682. https://doi.org/10.1073/pnas.77.11.6678
  2. Cha YJ, Park KJ, Kim DK, Chun HS, Lee BK, Kim KH, Lee SY, Kim SJ. 1994. Isolation and characterization of cellulose producing cetobacter xlyinum KI strain. Korean J Appl Microbiol Biotechnol 22: 571-576.
  3. Ko JY, Shin KS, Yoon BD, Choi WY. 2000. Isolation and identification of Acetobacter xlyinum GS11 producing cellulose. Korean J Appl Microbiol Biotechnol 28: 139-146.
  4. Navaro RR, Uchimura T, Komagata T. 1999. Taxonomic heterogenicity of strains comprising Gluconobacter hansenii. J Gen Appl Microbiol 45: 295-300. https://doi.org/10.2323/jgam.45.295
  5. Matthysse AG, Holmes KV, Gurlitz RHG. 1981. Elaboration of cellulose fibrils by Agrobacterium tumefaciens during attachment to carrot cell. J Bacteriol 145: 583-595.
  6. Reuber TL, Walker GC. 1993. Biosynthesis of swiccinoglugan, a symbiotically important polysaccharide of Rhizobium meliloti. Cell 74: 269-280. https://doi.org/10.1016/0092-8674(93)90418-P
  7. Canale PE, Wolfe RS. 1964. Synthesis of cellulose by Sarcina venturiculi. Biochim Biophys Acta 82: 403-411. https://doi.org/10.1016/0304-4165(64)90314-9
  8. Jeong YJ, Lee IS. 2000. A view of utilizing cellulose produced by acetobactor bacteria. Food Industry and Nutrition 5: 25-29.
  9. Stephens RS, Westland JA, Neogi AN. 1990. Method of using bacterial cellulose as a dietary component. US Patent 4,960,763.
  10. Kim DS, Ryu BH. 1991. Antitumor effect of polysaccharide produced from a mutant of Acetobacter pasteunanus IFO 13751-13755. Kor J Food Sci Technol 23: 405-409.
  11. Report of the American Institute of Nutrition ad Hoc committee on Standards for Nutritional Studies. 1977. J Nutr 107: 1340-1348.
  12. Choi Y, Cho SH, Kim HJ, Lee HJ. 1998. Effects of soluble fibers on lipid metabolism and acitivities of intestinal disaccharidases in rats. J Nutr Sci Vitaminol 44: 591-600. https://doi.org/10.3177/jnsv.44.591
  13. Dahlqvist A. 1974. Disaccharidases in Method of Enzymatic Analysis. 2nd ed. Academic Press, New York. Vol 2, p 916-922.
  14. Gornall AG, Bardawill CJ, David MM. 1949. Determintion of serum proteins by means the biuret reaction. J Biol Chem 177: 751-766.
  15. Folch J, Lees M, Sloan-stanley GH. 1957. Simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226: 497-509.
  16. Pearson S, Stern S, Mcgracd TH. 1953. A rapid accurate method for the determination of total cholesterol in serum. Anal Chem 25: 813-814. https://doi.org/10.1021/ac60077a041
  17. Sale FO, Marcgesini S, Fishman PH, Berra B. 1984. A sensitive enzymatic assay for determination of cholesterol in lipid extracts. Anal Biochem 142: 347-350 https://doi.org/10.1016/0003-2697(84)90475-5
  18. Rotenberg S, Jakobson PE. 1978. The effect of dietary pectin on lipid composition of blood, skeletal muscle and internal organ of rats. J Nutr 108: 1284-1392.
  19. Park SH, Lee YK, Lee HS. 1994. The effect of dietary fiber feeding on gastrointestinal functions an lipid and glucose metabolism in streptozotocin-induced diabetic rats. Korean J Nutr 27: 311-322.
  20. Forman LP, Schneeman BO. 1980. Effects of dietary pectin and fat on small intestine contents and exocrine pancreas of rats. J Nutr 110: 1992-1999.
  21. Kim KH. 2002. Pellicle properties biosynthesized from tea fungus fermentation system. Ph D Thesis. Catholic University of Daegu, Korea, p 68.
  22. Brown RC, Kelleher J, Losocosky MS. 1979. The effect of pectin on the structure and function of the rat small intestine. Br J Nutr 42: 357-365. https://doi.org/10.1079/BJN19790125
  23. Stock-Damge C, Bouchet P, Dentinger A, Aprahamian M, Grenier JF. 1983. Effect of dietary fiber supplementation on the secretory function of the exocrine pancrease in the dog. Am J Clin Nutr 38: 843-848.
  24. Jacobs LR, White FA. 1983. Modulation of mucosal proliferation in the intestine of rats fed wheat bran diet. Am J Clin Nutr 37: 945-953.
  25. Jacobs LR. 1983. Effects of dietary fiber on mucosal growth and cell proliferation in the small intestine of rats: a comparison of oat bran, pectin, and guar gum with total fiber deprivation. Am J Clin Nutr 37: 954-960.
  26. Tebib K, Besancon P, Rouanet JM. 1996. Effects of dietary grape seed tannins on rat cecal fermentation and colonic bacterial enzymes. Nutr Res 16: 105-110. https://doi.org/10.1016/0271-5317(95)02064-0
  27. Choi YS, Cho SH. 2001. Effects of defatted safflower seed powder on intestinal physiology and fecal short-chain fatty acids in ovariectomized female rats fed high cholesterol diets. J Korean Soc Food Sci Nutr 30: 528-534.
  28. Thompson LL, Tasman-Jones C. 1982. Disaccharidase levels of the rat jejunum are altered by dietary fiber. Digestion 23: 253-258. https://doi.org/10.1159/000198758
  29. Calvert R, Schneeman BO, Satchithanandam S, Cassidy MM, Vahoney GV. 1985. Dietary fiber and intestinal adaptation: effects on intestinal and pancreatic digestive enzyme activities. Am J Clin Nutr 41: 1249-1256.
  30. Farness PL, Schneeman BO. 1982. Effects of dietary cellulose, pectin and oat bran on the small intestine in the rat. J Nutr 112: 1315-1319.
  31. Nishina PM, Freenland RA. 1990. The effects of dietary fiber feedng on cholesterol metabolism in rats. J Nutr 120: 800-805.
  32. Jang SJ, Park YJ. 1995. Effects of dietary fiber sources on lipid metabolism in rats fed high lard diet. Korean J Nutr 28: 107-114.
  33. Reardon MF, Nestel PJ, Craig IH, Harper RW. 1985. Lipoprotein predictors of the severity of coronary artery disease in men and women. Circulation 71: 881-888. https://doi.org/10.1161/01.CIR.71.5.881
  34. Cho HG. 2002. Small dense LDL; can it be atherogenic in Korean population? J Korean Soc Lipidology and Atherosclerosis 12: 19-29.
  35. Griffin BA, Freeman DJ, Tait GW, Thomson J, Caslake MJ, Packard CJ. 1994. Role of plasma triglyceride in the regulation of plsama low density lipoprotein (LDL) subfractions: relative contribution of small, dense LDL to coronary heart disease risk. Atherosclerosis 106: 241-253. https://doi.org/10.1016/0021-9150(94)90129-5

Cited by

  1. Gluconacetobacter hansenii TL-2C에 의한 Bacterial Cellulose의 Pilot 생산 vol.36, pp.10, 2007, https://doi.org/10.3746/jkfn.2007.36.10.1341
  2. 방사선 이용 미생물 발효 셀룰로오스 다공성 폼 제조 및 특성 vol.31, pp.4, 2002, https://doi.org/10.11626/kjeb.2013.31.4.302