DOI QR코드

DOI QR Code

Effect of Long Term Buchu (Chinese chives) Diet on Antioxidative System of ICR Mice

장기간의 부추식이가 ICR 마우스의 항산화시스템에 미치는 영향

  • 이민자 (인제대학교 식품영양학과) ;
  • 류복미 (인제대학교 식품영양학과) ;
  • 이유순 (경북과학대학 향장공업과) ;
  • 문갑순 (바이오헬스 소재연구센터)
  • Published : 2002.10.01

Abstract

To evaluate the antioxidative and antiaging effects of buchu in vivo system, 2% or 5% buchu diets were fed to ICR mice for 13 months and lipid peroxidation, protein oxidation, activities of antioxidative enzymes and total glutathione content on liver were measured. Hepatic TBARS contents did not show differences among diet groups, while buchu diet suppressed the protein oxidation significantly. SOD activities of control diet group decreased slowly after 7 month but buchu diet increased its activities steeply for first 3 month and continued to increase twice or three times higher than control diet during 13 month. While GSH-Px activities of control diet group were increased slightly with age, buchu diet increased its activities twice or three times higher than control. While catalase activities of control diet group were almost not changed with age, buchu diet increased its activities in both 2% and 5% diet groups. Total hepatic glutathione contents were gradually increased with age, while buchu diets In-creased its contents remarkably. According to this study, many antioxidative materials and sulfides compounds containing buchu seems to protect antioxidative systems on ICR mice.

부추의 in viuo에서의 항산화 및 극-노화효과를 평가하기 위해 ICR 마우스에 2%, 5% 부추식이를 13개월간 급여하면서 항산화 시스템에 미치는 영향을 조사하였다. 간에서의 지질과 산화 정도를 TBARS 값으로 측정한 결과 연령 증가에 따라 지질과산화는 증가하였으나 각 군들간에 유의적인 차이는 나타나지 않았다. 단백질 카르보닐 함량에 있어서는 대조군에 비해 부추식이군에서 유의적으로 낮은 값을 나타내어 부추식이는 조직 단백질 산화를 강력하게 억 제하였고 부추식이군 사이에서는 유의차가 나타나지 않았다 이로써 조직의 과산화를 측정하는데 TBARS보다 단백질 카르보닐 값이 더 예민한 방법임을 알 수 있었다. 간에서의 항산화 효소계 활성을 측정한 결과 SOD 활성은 대조군에서 5개월까지 증가하다가 이후로는 감소하였으나 부추식이군에서는 7개월까지 증가하는 경향을 나타내었는데 활성이 대조군에 비해 300% 이상 현저하게 높았다. GSH-Px 활성은 대조군의 경우 9개월까지 증가하다 감소하였으나 부추 첨가 식이군에서는 가령에 따라 계속 그 활성이 증가하였고 5% 부추첨가 식이군의 효소 활성이 가장 높아 대조군보다 약 200% 높은 활성을 나타내었다. Catalase 활성은 대조군의 경우 연령에 따라 활성의 변화가 없었고 부추 식이군에서 그 활성이 대조군에 비해 유의적으로 높았다. 간조직 내의 총 글루타치온 함량은 대조군에 비해 부추식 이군에서 유의적으로 높은 값을 나타내어 13개월령에서 대조군보다 118% 정도 증가하였다. 따라서 부추 속에 함유된 항산화 물질들과 함황 화합물들이 ICR 마우스의 가령에 따른 항산화 시스템을 적극적으로 보호함을 확인하였다.

Keywords

References

  1. Freeman BA, Crapo JD. 1982. Biology of disease: Free radicals and tissue injury. Laboratory Investigation; a Journal of Technical Methods and Pathology 47: 412-426.
  2. Halliwell B, Gutteridge JMC. 1999. Free Radicals in Biology and Medicine. Third Edition. Oxford University Press. The International Journal of Biochemistry and Cell Biology 31:1454. https://doi.org/10.1016/S1357-2725(99)00059-X
  3. Andrew PW. 2001. Ageing and the free radical theory. Respiration Physiology 128: 379-391. https://doi.org/10.1016/S0034-5687(01)00313-9
  4. Borek C. 2001. Antioxidant health effects of aged garlic extract. The Journal of Nutrition 131: 1010S-1015S.
  5. Kuresh AY, James AJ. 2001. A possible emerging role of phytochemicals in improving age-related neurological dysfunctions: A multiplicity of effects. Free Rad Biol and Med 30: 583-594. https://doi.org/10.1016/S0891-5849(00)00510-4
  6. 한국식물대보감. 1980. 한국자원식물연구소, 제일출판사. p 508.
  7. 中藥大辭典. 1985. 小學館. 上海科學機術出版社, 上海. p 838.
  8. Kameoka H, Miyake A. 1974. The constituents of the steam volatile oil from Allium tuberosum Rotter. Nippon Nogeikagaku Kaishi 48: 385-392.
  9. Pinto JT, Qiao C, Xing J, Rivlin RS, Protomastro ML, Weissler ML, Tao Y, Thaler H, Heston WD. 1997. Effects of garlic thioallyl derivatives on growth, glutathione concentration, and polyamine formation of human prostate carcinomacells in culture. Am J Clin Nutr 66: 398-405.
  10. Senapati SK, Dey S, Dwivedi SK, Swarup D. 2001. Effect of garlic (Allium sativum L.) extract on tissue lead level in rats. Journal of Ethnopharmacology 76: 229-232. https://doi.org/10.1016/S0378-8741(01)00237-9
  11. Agarwal KC. 1996. Therapeutic actions of garlic constituents. Medicinal Research Reviews 16: 111-124. https://doi.org/10.1002/(SICI)1098-1128(199601)16:1<111::AID-MED4>3.0.CO;2-5
  12. Black HS. 1987. Potential involvement of free radical reactions in ultraviolet light-mediated cutaneous damage. Photochemistry and Photobiology 46: 213-221. https://doi.org/10.1111/j.1751-1097.1987.tb04759.x
  13. Anatol K, Ulrike M, Sonke A, Amaar U, Charlotte L, Tomas MT, Ulrike B. 2001. Influence of vitamin E and C supplementation on lipoprotein oxidation in patients with Alzheimer's disease. Free Rad Biol Med 31: 345-354. https://doi.org/10.1016/S0891-5849(01)00595-0
  14. Rakesh PP, Brenda JB, Jack HC, Neil H, Marion K, Balaraman K, Dale AP, Stephen B, Victor DU. 2001. Antioxidant mechanisms of isoflavones in lipid systems: paradoxical effects of peroxyl radical scavenging. Free Rad Biol Med 31: 1570-1581. https://doi.org/10.1016/S0891-5849(01)00737-7
  15. Mortensen A, Skibsted LH, Sampson J, Rice-Evans C, Everett SA. 1997. Comparative mechanisms and rates of free radical scavenging by carotenoid antioxidants. FEBS Letters 418: 91-97. https://doi.org/10.1016/S0014-5793(97)01355-0
  16. Yamaguchi F, Yoshimura Y, Nakazawa H, Ariga T. 1999. Free radical scavenging activity of grape seed extract and antioxidants by electron spin resonance spectrometry in an H(2)O(2)/NaOH/DMSO system. J Agric Food Chem 47: 2544-2548. https://doi.org/10.1021/jf9806762
  17. Yu BP. 1996. Aging and oxidative stress: Modulation by dietary restriction. Free Rad Biol Med 21: 651-668. https://doi.org/10.1016/0891-5849(96)00162-1
  18. Hahn SJ, Takano T. 1986. Studies on the Chinese chives (Allium tuberosum Rottler) and wild type of Allium species in Korea. J Kor Soc Hort Sci 27: 1-10.
  19. Yoo SO, Bae JH. 1993. Investigation of Korean native chives on flower bud differentiation. J Kor Soc Hort Sci 34: 395-401.
  20. Jung HD, Youn SJ. 1996. Comparison of chemical and taste of the Korean native Chinese chive leave. J Kor Soc Hort Sci 37: 611-616.
  21. AOAC. 1980. Official Methods of Analysis. 14th ed. Association of official analytical chemists, Washington DC. p 31.
  22. Ohkawa H, Ohishi N, Yagi K. 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry 95: 351-358. https://doi.org/10.1016/0003-2697(79)90738-3
  23. Oliver CN, Ahn B, Moerman EJ, Goldstein S, Stadtman ER. 1987. Age-related changes in oxidized proteins. J Biol Chem 262: 5488-5491.
  24. Livine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Shaltiel S, Stadtman ER. 1990. Determination of carbonyl content in oxidatively modified proteins. Methods in Enzymology 186: 464-478. https://doi.org/10.1016/0076-6879(90)86141-H
  25. Marklund S, Marklund G. 1974. Involvement of the superoxide anion radical in the antoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry / FEBS 47: 469-474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  26. Lawrence RA, Burk F. 1976. Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun 71: 952-958. https://doi.org/10.1016/0006-291X(76)90747-6
  27. Aebi H. 1984. Catalase in vitro. Methods in Enzymology 105: 121-126. https://doi.org/10.1016/S0076-6879(84)05016-3
  28. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. 1951. Protein determination with the Folin phenol reagent. J Biol Chem 193: 265-275.
  29. Richardson RJ, Murphy, SD. 1975. Effect of glutathione depletion on tissue deposition of methylmercury in rats. Toxicol Appl Pharmacol 31: 505-519. https://doi.org/10.1016/0041-008X(75)90274-4
  30. Liu J, Mori A. 1993. Age-associated changes in superoxide dismutase, thiobarbituric acid reactivity, and reduced glutathione level in the brain and liver in senescence accerlated mice (SAM): a comparison with ddY mice. Mechanisms of Ageing and Development 71: 23-30. https://doi.org/10.1016/0047-6374(93)90032-M
  31. Akaike T. 2001. Role of free radicals in viral pathogenesis and mutation. Reviews in Medical Virology 11: 87-101. https://doi.org/10.1002/rmv.303
  32. Kim JW, Yu BP. 1989. Characterization of age-related malondialdehyde oxidation: the effect of modulation by food restriction. Mechanisms of Ageing and Development 50: 277-287. https://doi.org/10.1016/0047-6374(89)90105-X
  33. Yagi K. 1987. Lipid peroxides and human diseases. Chemical and Physics of Lipids 45: 337-351. https://doi.org/10.1016/0009-3084(87)90071-5
  34. Player TJ, Mills DJ, Horton AA. 1977. Age-dependent changes in rat liver mictrosomal and mitochondrial NADPH dependent lipid peroxidation. Biochem Biophys Res Commun 78: 1397-1402. https://doi.org/10.1016/0006-291X(77)91447-4
  35. Laura JH, Michael AT, Juan CT. 1997. Increased susceptibility of Alzhemier's disease temporal cortex to oxygen free radical-mediated processes. Free Rad Biol Med 23: 183-190. https://doi.org/10.1016/S0891-5849(96)00573-4
  36. Agarwal S, Sohal RS. 1996. Relationship between susceptibility to protein oxidation, aging, and maximum life span potential of different species. Experimental Gerontology 31: 365-372. https://doi.org/10.1016/0531-5565(95)02039-X
  37. Richardson JS. 1993. Free radicals in the genesis of Alzhemier's disease. Ann NY Acad Sci 695: 73-76. https://doi.org/10.1111/j.1749-6632.1993.tb23031.x
  38. Okatani Y, Wakatsuki A, Reiter RJ, Miyahara Y. 2002. Melatonin reduces oxidative damage of neural lipids and proteins in senescence accerlated mouse. Neurobiology of Aging 23: 639-644. https://doi.org/10.1016/S0197-4580(02)00005-2
  39. Mine EI, Emine S, Gungor K. 2002. Age-related changes in the glutathione redox system. Cell Biochemistry and Function 20: 61-66. https://doi.org/10.1002/cbf.937
  40. Jesus P, Ana IG, Maria EM, Maria JT, Javier GG, Rafael J. 2001. Effects of aging on the susceptibility to the toxic effects of cyclosporin A in rats. Changes in liver glutathione and antioxidant enzymes. Free Rad Biol Med 30: 836-845. https://doi.org/10.1016/S0891-5849(01)00471-3
  41. Sasaki K, Hatta S, Wada K, Ueda N, Yoshimura T, Endo T, Sakada M, Tanaka T, Haga M. 2002. Effects of extract of Ginko biloba leaves and its constituents on carcinogenmetabolizing enzyme activities and glutathione levels in mouse liver. Life Sciences 70: 1657-1667. https://doi.org/10.1016/S0024-3205(01)01557-0
  42. Farooqui MY, Day WW, Zamorano DM. 1987. Glutathione and lipid peroxidation in the aging rat. Comp. Comparative Biochemistry and Physiology 88: 177-180. https://doi.org/10.1016/0305-0491(87)90097-6
  43. Perez R, Lopez M, Barja de Quiroga G. 1991. Aging and lung antioxidant enzyme, glutathione and lipid peroxidation in the rat. Free Rad Biol Med 10: 35-39. https://doi.org/10.1016/0891-5849(91)90019-Y

Cited by

  1. The Effect of Aerobic Exercise and Allium Tuberosum Intake on Blood Lipids, MDA and Antioxidant Enzyme in Rats vol.20, pp.2, 2010, https://doi.org/10.5352/JLS.2010.20.2.245
  2. Effects of Exhaustive Exercise and Aged Garlic Extract Supplementation on Weight, Adipose Tissue Mass, Lipid Profiles and Oxidative Stress in High Fat Diet Induced Obese Rats vol.20, pp.12, 2010, https://doi.org/10.5352/JLS.2010.20.12.1889
  3. Selection of functional lactic acid bacteria as starter cultures for the fermentation of Korean leek (Allium tuberosum Rottler ex Sprengel.) vol.191, 2014, https://doi.org/10.1016/j.ijfoodmicro.2014.09.016
  4. Effects of steam blanching pretreatment on quality of spray-dried powders prepared from pressed juice of garlic chives vol.22, pp.3, 2015, https://doi.org/10.11002/kjfp.2015.22.3.385
  5. The Long Term Effect of Buchu (Chinese chives) Diet on ROS Formation in the Liver and Skin Tissue of ICR mice vol.32, pp.3, 2003, https://doi.org/10.3746/jkfn.2003.32.3.444
  6. Anti-inflammatory Effect and Antioxidative Activities of Ingredients used in Bibimbab vol.23, pp.2, 2013, https://doi.org/10.5352/JLS.2013.23.2.213
  7. Protective Effect of Dietary Buchu (Allium tuberosum Rottler) on Oxidative Stress and Lipofuscin Formation in Streptozotocin-Induced Diabetic Rats vol.32, pp.8, 2003, https://doi.org/10.3746/jkfn.2003.32.8.1337
  8. 부추의 함황화합물이 인체 암세포 증식에 미치는 영향 vol.38, pp.8, 2009, https://doi.org/10.3746/jkfn.2009.38.8.1003