Commun. Korean Math. Soc. 17 (2002), No. 4, pp. 647673

TOPOLOGICAL R2?*DIVISIBLE R3-SPACES
JANG-HwWAN IMm

ABSTRACT. There are many models to study topological R?-planes.
Unlike topological R*-planes, it is difficult to find models to study
topological R*-spaces. If an 4-dimensional affine plane intersects
with R?, we are able to get a geometrical structure on R® which is
similar to R*-space, and called R2-divisible R3-space. Such spatial
geometric models is useful to study topological R3-spaces. Hence,
we introduce some classes of topological R2-divisible R3-spaces
which are induced from 4-dimensional affine planes.

1. Introduction

In this paper we introduce a new class of topological space geome-
tries, so-called topological R?-divisible R3-spaces. In particular we give
lots of models of this space geometry. A topological projective plane P
is a projective plane with point set P and line set £, where both P and
L carry topologies such that the operations of joining and intersecting
are continuous in their domains of definition. A topological projective
plane is called n-dimensional if P and £ are n-dimensional, locally com-
pact, connected topological spaces. As in the case of projective planes,
we will call a locally compact, connected affine plane n-dimensional if
its point set and line set are n-dimensional, locally compact, connected
topological spaces. The lines in 2-(4-)dimensional affine planes are home-
omorphic to R (R?). For general information about topological planes
the reader is referred to [16]. Since the fundamental papers of Salzmann
[14, 15], Betten has tried to classify all 4-dimensional compact flexible
projective planes. A topological projective plane is called flexible if the
collineation group has an open orbit in the space of flags (lag=incident
point-line pair). In a series of papers of Betten and Knarr many differ-
ent types of 4-dimensional projective planes were found. These planes
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can be represented by 4-dimensional affine planes, and R?-divisible R3-
spaces are derived from 4-dimensional affine planes. We can regard an
R2-divisible R3-space as an intersection of a 4-dimensional affine plane
and R3. In order to explain of this geometrical structure, we consider
the classical 4-dimensional affine plane A2C over the complex field C
and the induced R2-divisible R3-spaces. The affine plane A;C con-
sists of point set C x C and the following subsets of C' x C are called
lines: L(s,t) = {(z,sz + t)|z € C} for s,t € C, {c} x C for c € C.
If we identify C? with R* = {(z,y,u,v)|z,y,u,v € R}, then we can
identify the lines with the following forms: L(a,b,&,n) = {(z,y,0x —
by + €,ay + bz + n)lz,y € R} for (a,b,€,m) € R*, {(z,y)} x R? for
(z,y) € R% Let R3_; := {(0,y,u,v)|ly,u,v € R} and let I(a,b,§,n) =
L(a,b,&,m) NR3_y = {(0,y, —by + &, ay +n)|y € R}. L denote the set of
all lines {(a, b,&,m) with (a,b,&,7) € RY. If we identify R3_, with R® =
{(y,u,v)|y,u,v € R}, then we get a geometrical structure (R3,L,A) on
R3, that is, for two points (y1,u1,v1), (y2,u2,v2) € R® with y; # 32
there exists a unique joining line I(a,b,&,7), and A = {{y} x R*|y € R}
is a partition of R3. In the same way we get also a geometrical structure
on Rgzo := {(z,0,u,v)|z,u,v € R}. Hence we have an abstraction, so-
called R2-divisible R®-spaces. The two geometrical structures are equal
to the classical R3-space without lines on the vertical planes {z} x R?
with z € R. We call the classical R3-space without lines on the vertical
planes {z} x R? with z € R the real affine R?-divisible R*-space. In
the real affine R2-divisible R3-space on R3 = {(z,y, 2)|z,y,2 € R}, we
can consider two projections on < z,y >-coordinate plane and < z,z >-
coordinate plane, respectively. We get also two affine planeson < z,y >-
coordinate plane and < x,z >-coordinate plane, respectively, where the
line set is the set of all projections of lines in B3 on < x,y >-coordinate
plane and < z,z >-coordinate plane, respectively. In a series of papers
of Betten and Knarr we have lots of examples of R2-divisible R3-spaces
which are induced from 4-dimensional affine planes.

After inspection of all flexible 4-dimensional translation planes we
see: the induced R2-divisible R3-spaces by translation planes are the
real affine R2-divisible R3-spaces. The affine planes in [2] give rise to
R?-divisible R3-spaces which are non-classical, that is, if we consider two
projections on < z,y >-coordinate plane and < z, z >-coordinate plane,
respectively, one of the projection is the real affine plane and the other
is a Moulton plane. In [8] Knarr studied 4-dimensional shift planes. The
shift planes give also rise to non-classical R2-divisible R3-spaces. In this
case one of the projection is the classical affine plane and the other is
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a 2-dimensional shift plane. Conversely, with these observations we can
reconstruct R2-divisible R3-spaces, so-called product spaces (see 2.1). In
this viewpoint one of the induced R2-divisible R3-spaces in [2] are the
product spaces of the real affine plane and a Moulton plane. The R2%
divisible R3-spaces which are induced from 4-dimensional shift planes
are the product spaces of the real affine plane and a 2-dimensional shift
plane.

The main purpose of this paper is to give many examples of this
geometry. It may give a motivation for studying topological R2-divisible
R3-spaces continuously. First we introduce the class of product spaces
and investigate some related topics. Using Theorems 2.5 and 2.6, we
determine the collineation group of an (a,d)-space which is induced
from a 4-dimensional shift plane. In section 3 we introduce different
types of R2-divisible R3-spaces which seem to be a generalization of
product spaces. These types of R2-divisible R3-spaces arise from [6,
8]. In section 4 we give more examples of topological R2-divisible R>-
spaces. We are interested in topological R2-divisible R3-spaces, because
the induced R2-divisible R3-spaces from 4-dimensional affine planes have
already topological structure. We start with some basic definitions.

Let X be a topological space and (A )nen be a sequence of subsets of
X. Denote by liminf A,, the set of all limit points of sequences (an)nen
with a, € A,, and denote by limsup A, the set of all accumulation
points of such sequences. The sequence (An)nen is Hausdorff-convergent
to A C X if and only if lim inf 4, = limsup A,, = A (written by lim A4, =
Aor A, — A).

Hausdorff metric: Let P" denote a topological space homeomor-
phic to R". Let U be the set of all non-empty closed subsets of P3. We
define on U the following metric:

§:U XU — R: (A, B) — sup{|d(z, A) — d(z, B)|[e~%"™) |z € P*},

where d is the metric on P? and p € P2. Then ¢ is a metric on U. Let
(An)nen be a sequence in U and A € U. Then (Ap)nen converges to A
in (U, ) if and only if lim A, — A (see [7, Chap. 1.3}).

Let P™ denote a topological space which is homeomorphic to R". A
partition A 1= {S;|i € A} in P"* (n > 2) is divisible if each S; is closed
in P" and homeomorphic to P™ 1.

DEFINITION 1.1. Let £ be a system of subsets of P3, and let A =
{8;]i € A} be a divisible partition in P3. The elements of P3 are called
points, and the elements of £ are called lines. We say that (P3,L£,A) is
a topological R2-divisible R3-space if the following axioms hold:
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(1) Each line I € £ is closed in the topological space P* and homeo-
morphic to E.

(2) For all (z,y) € S; x Sj with 7 # j there is a unique line [ € £ with
z,y € l. For i = j there are no lines [ € £ with z,y € [.

(3) The mapping

Vi P3x P3N\ Uieu(Si x Si) — L
is continuous, where £ has the induced topology of Hausdorft-
convergence.

The joining line in (2) is denoted by { = x V y. Let H denote the
Hausdorff-convergence topology on £. Without (3) (P3,L£,A) is called
an R%-divisible R3-space. If A = {S;|i € A} is a divisible partition in
P2 then we can similarly define an R-divisible R%-plane (P%,L,A). If
we think the partition as the added line set, we can regard an R-divisible
R2-plane as an R?-plane.

DEFINITION 1.2. Let (P23, £, A) be an R2-divisible R3-space. A subset

E C P3 is called a plane of (P3, £, A) if the following conditions hold:

(1) E is closed in P? and homeomorphic to R?,

(2) (E,LE,Ag) is an R-divisible R%-plane, where L := {l € L|l C E}

and Ag = {F N S;|i € A} is a divisible partition in E.

An R-divisible R%-plane in (P2, L, A) is obviously an R2-plane. Let £
denote the set of all planes of (P3, L, A). Since the plane set & is also
a subset of U (see Hausdorff metric), we can take on £ the induced
topology of U.

Let (P3,L£,A) be an R2-divisible R3-space. Since lines are homeomor-
phic to R, there is a natural notion of intervals in lines. If [ € L is a
line and p, g € I are two (not necessarily distinct) points on [, then we
denote the interval which consists of all points on [ between p and g
by the symbol [p,q]. The open interval between p and ¢ is defined as

(p,9) = [p.a] \ {p. q}-
DEFINITION 1.3. Let (R2,£) be an R2-plane. A subset P C R? is
called a subgeometry of (R?, L) if z,y € P withzVy € L, thenzVy C P.

LEMMA 1.4. Let E = (R? L) be an R*-plane. Let P be a subgeom-
etry of E which contains a non-empty open set of E, then E = P.

PROOF. Let U be an open set in R? and U C P. Assume that there
exists a point ¢ € R?\ P. Let p € U. Since U is open in R2?. it is clear that
[UN(pVq)| > 2. Therefore, pV g C P, so that ¢ € P, a contradiction. [J
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If S; € A, then P3\S; has precisely two components (denoted by S;, S;),
of which S; is the common (topological) boundary. If we choose more
S; € A with i # j, then one of the components of P?\ S; (for example

Sf ) is also separated by S;. We can choose one of the components of

5"\ S; which contains S; and S; as the topological boundaries. Let S;; -
denote the union of the components which has S; and S; as topological

boundaries, S; and S;. We identify Si“; ~ with simply S;

DEFINITIONS 1.5. (1) The final topology F on L is the largest topology
on £ for which the mapping V : P3 x P3\ Ujea(Si x ;) — L is
continuous.

(2) The open join topology OJ is generated by the subbasic elements
O1VOy ={pVqe€ L|p€ 01,9 € Oz}, where O1,0; are disjoint open
sets in P3.

(3) The open meet topology OM is defined by the subbasic sets Mo =
{l € LIIN O # 0}, where O is an open set in P3.

(4) The open partition meet topology OPM on L is generated by the
subbasis elements SC = {I € L|IN O # 0}, where O is an open set in S;
and S; € A.

(5) The compact open topology COT on L is defined by the subbasis
elements Sg ={leLlinS ={z},InS; = {y},[z,y] C S;;.’ N O},
where S;, §; € A, S;;_ is the union of the component which has S; and
S; as topological boundaries, S; and Sj, and O is open in P3,

LEMMA 1.6. Let (P3,L,A) be a topological R2-divisible R3-space.
Then:

(1) The topologies H, F,0J,OM for L coincide.
(2) The join map V : P? x P3\ Ujea(Si x Si) — L is open.
(3) HC OPM C COT.

Proor. [9, 1.8, 1.10] O

DEFINITION 1.7. Let (P3,L,A) be an R?-divisible R3-space. Given
two subsets A, B C P3, we define

[A,Bl:= | lab],
a€AbeB

i.e., [A, B] is the set of all points between A and B.

Let (P3, L, A) be an R%-divisible R3-space. Then we will consider the
following additional axiom:
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(B) (Bounded-axiom) If A, B C P? are compact, then [A,B] is also
compact.

THEOREM 1.8. Let (P3, L, A) be a topological R2?-divisible R3-space.
Then:

(1) (Order-condition) If the points sequences (an)neN,(bn)neN(Cn)neN
have limits a,b,c. If b, € [ay,c,] for all n € N, then it is also that
bela,c.

(2) If (P3, L, A) satisfies the axiom (B), then H = COT.

(3) Let H = COT. If A, B C P® are compact with A x § C P3 x P?\

Usea(S; x S;), then [A, B is also compact.

Proor. (1) [9, 2.5].

(2) Assume that (P3, L, A) satisfies the axiom (B). Then we first show
that OPM C OJ = H. Let | € SY € OPM, {p} =!NU and V be an
open set in P2 such that S;NV = U. Let (V;,)nen be decreasing sequence
of neighborhoods of p such that {V,|n € N} is a neighborhood basis at
p. Let S;r and S; be the two connected components of P3\ S;, and let
Van(P3\S;) = V,F UV, such that V;f C S; and V,; C S . We will show
that there exists a number n € N such that [ € V;F vV,;7 C SY. Suppose
that it is not true; for each n € N we can choose p, € V,F, ¢, € V,7 such
that (p, V g.) NU = 0. Since (p,,) and (g,) converge to p, and by the
axiom (B) and order-condition, (p, V ¢n) N S; converges to p. Hence for
sufficiently large n € N (p, V g,) N'S; €V N S; = U, a contradiction.
We show that COT € OPM. Let [ € Si(]? € COT, and let {z} =
Sinl{y} = S;NI. If i = j, then it is clear that SJ € OPM. Hence
let i # j. Let (Vp(z))nen and (Wy,(y))nen be two decreasing sequences
of neighborhoods of z and y such that (V,,(z))nen and (Wi (y))nen are
neighborhood basis at  and y in S; and S, respectively. Then we will
show that there exists a number n € N such that [ € SZ-V w(®) S;/V"(z) -
Sg . If we assume that it is not true; for each n € N there exist z,, €
Va(z) and y, € W,,(y) such that [z,,y.] Sg- . For each n € N choose
a point p, € [Zn,Yn] such that p, ¢ Sg . Then by the axiom (B) and
order-condition, the sequence (p,) has an accmulation point on [z,y], a
contradiction.

(3) Let H = COT. Assume that [A, B] is not compact. Then there
exists a sequence ((an,bn)) in 4 x B and a sequence (pn), Pn € [an, bn] \
{an,bn} such that (p,) is unbounded. Since A x B is compact, there

exists a convergent subsequence ((an,,bn,)) which converges to a point
(a,b) € Ax B. Let a # b. Let a1,b; € aV b such that a € (a;1,b) and
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b € (a,b;). Choose a relative compact open set U which contains [ay, b1].
Since H = COT and a,, V by, — aV b, there exists N such that for
all k> N U([an,,bn,]) U [a,b] C U. Consequently, U([an,, by, ]) U [a,b] is
bounded, a contradiction. O

DEFINITION 1.9. An isomorphism between R2-divisible R3-spaces
(P3,L1,A1) and (P3, L2, Ag) is a bijection vy : P} — P3 such that
I € L3 and S] € Ay for each | € L1 and S; € A;. A collineation <y of
an R2-divisible R3-space (P3, L, A) is a bijection of P3 such that I € £
and S} € A for each [ € L and S; € A.

LEMMA 1.10. (Reduction) Let (R3, £, A) be an R?-divisible R3-space.
Assume that the group (R3,+) is admissible as a transitive collineation
group. If there exists a point a € R® witha € S; such that the restriction
v|{a} x R3\ {a} x S; is continuous, then V is continuous.

PROOF. Let (a,b) € S; x Sj,i # j and an, — a,bp — b. Then we
have to show that ¢ Vb C liminfa, V b, € limsupa, Vb, € a Vb.
Let z € aV b. Then a, — (a, —a) = a and b, — (an — @) — b. Since
V|{a} x R3\ {a} % S; is continuous, there exists a sequence (Yn)nen,Yn €
aV (b, — (@, — a)) such that y,, — z. Therefore, £, = yn + (an —a) €
(a4 an —a)V (bp — (an —a) + (an — @) = an V by, and so z, — z. Let
z € limsupay, V b,. Assume that = & a V b. There exists a subsequence
(Zn, )y Ty € Gny V b, such that z,, — z. Then, Tn, — (an, —a) €
(an, — (@n, — @)V (bn, — (@n,, — @)) = aV (b, — (@, — @)), and we have
Ly, — (@, —a) — z. Since by, —(an, —a) — band V[{a} X R3\{a}xS;
is continuous, z € a V b, a contradiction. [

DEFINITION 1.11. Let B be a system of subsets of P3. The element
of B are called surfaces. The incidence structure (P3,B) is called a
(3,2,2)-geometry if the following axioms hold:

(1) Each surface B € B is closed in the topological space P? and
homeomorphic to R2.

(2) Each pair p,q of distinct points is contained in a unique surface
B. Let p Vg q denote the surface which contains two points p, g.

DEFINITION 1.12. A (3,2,2)-geometry (P2, B) is topological if the join
map Vg : P xP3\A —> Bis continuous, where A = {(p,p)|p € P} de-
notes the diagonal and B carries the topology of Hausdorff-convergence.
The notation of (3,2,2)-geometries first appeared in [1].

Planar functions and shift planes
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DEFINITION 1.13. Let G, H be two (additively written) abelian groups.
A function f : G — H is called planar if it has the following property:
For all d € G\ {0} the mapping f4: G — H :z — f(z +d) — f(z) is
bijective.

Let I(c) = {(c,y)|ly € H} for c € G and l(a,b) = {(z, f(z—a)+b)|z € G}
for (a,b) € G x H. Then I(G, H; f) is the incidence structure with point
set P = G x H and line set £ = {l(c)|c € G} U {l(a,b)|(a,b) € G x H}.
This incidence structure turns out to be a special kind of affine plane,
usually referred to as the shift plane generated by f. It is well known
that if f : R — R (F : R? — R?) is a continuous planar function,
then I(R, R; f) (I(R?, R? F)) is a 2-dimensional (4-dimensional) affine
plane.

Examples of planar functions R> — R? and the induced R’-
divisible R3-spaces.
(1) The differentiable planar function C — C': 2 — 2? interpreted
as a map from R? to R? is

R? — R?: (z,y) — (2% — ¢%, 2zy).

If we set z = 0 (y = 0), then we get an R2-divisible R3-space
which is interpreted as the product space of the usual shift plane
and the real affine plane.

(2) Given planar functions f and g on R which are both convex. Pol-
ster [11] constructs a planar function fx*g on R2?, called the product
of f and g, as follows:

(fxg): R* — R*(z,y) — (f(z) — 9(y), zy).

In this case, if we set z = 0 (y = 0), then we get an R2-divisible R3-
space which is interpreted as the product space of a 2-dimensional
shift plane and the real affine plane

(3) Two further differentiable planar functions in [8] are

R R (3,y) — (ay — 32° 597 — =2
and
R? — R?: (z,y) — (zy — lx"’ —z l(y2 —2%) — i:54)
’ 3 "2 1277

In two cases, if we set z = 0 (y = 0), then we get an R2-divisible
R3-space which is interpreted as an R2-divisible R3-space induced
by a planar function (see section 3).
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The 4-dimensional shift planes have played a significant role in the clas-
sification of all flexible 4-dimensional compact projective planes.

2. Product spaces of two standard R2?-planes

An R2-plan (R2, L) is called standard if all vertical lines {z} x R
are in £ and the other lines [ € £ can be written as the graph(f) of a
continuous rupping f : R — R. Let E; = (R% L) and E» = (R%,3) be
two standard R2-planes. We identify E; with the horizontal plane z = 0
and E, with the vertical plane y = 0 in R® = {(,y, 2)|z,y,2 € R},
respectively. We define on R? the following curves as lines: f x g :=
{(z, f(z),g9(z))|x € R}, where f and g are non-vertical lines of E; and
Es5, respectively. Then we can construct on R3 a topological R?-divisible
R3-space.

DEFINITION 2.1. Let E; = (R? L) and E, = (R?,3) be standard R2-
planes. Let LxS = {fxg|f € £L,g € S} and let A = {{z} x R?|x € R}.
The incidence structure (R3, £ x S, A) is called the product space of two
standard R2-planes E; and E5 and written by (R3, £ x 3,A)g,xE,- In a
product space (R3, £ x S, A)g, x5, there exist always the planes on the
lines of F; and the planes on the lines of F5. A plane on a line of F; is
called a wvertical plane, and a plane on a line of Ey is called a horizontal
plane. We note that a vertical plane is the set {(z, f(x),2)|z,z € R}
with f € £ and a horizontal plane is the set {(z,y, g(z))|z,y € R} with
ge s

THEOREM 2.2. Let (R®, L x 3, A)g,xg, be the product space of two
standard R?-planes E; and E;. Then (R3, LxS, A) g, xE, is a topological
R?-divisible R3-space.

Proor. It is clear that each line f X ¢ € £ x & is homeomorphic to
R and closed in R3. We first show that (R3,£ x §,A)g,xE, is an R%-
divisible R3-space. Let z = (21, y1, 21) and y = (22, Yo, 22) With 21 # xs.
Since for the pair of points (z1,y1) and (z2,y2) in Ej, there exists a
unique line f in £, and since for the pair of points (z1,21) and (x9, 22)
in Fy, there exists a unique line g in &, hence f x g is the unique join
line of two points (1, y1, 21) and (2, ys, z2). We next show that (R3, £ x
S, A) g, B, 1s topological. Let (an)nen and (bn)nen be two sequences
with limits a = (z1,y1,21) and b = (z2,y2,22), 1 F# X2, respectively.
Then we have to show that aVvb C liminf a, Vb, C limsupa, Vb, C aVb.
Letc € aVb = fxg= {(z, f(z),9(x))|lz € R}, i.e., c = (zo, f(20), g(x0))
Let an Vb, = foxgn = {(z, fu(z), gn(x))|z € R}. Since E; is topological,
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the sequence ((zg, fn(z0))nen converges to (zo, f(xg)), and since Es is
also topological, the sequence ((zg, gn(Z0))nen converges to (zg, g(zg)).
It implies that ¢ € liminfa, V by,. Let ¢ = (z9,yp, 20) € limsupa, V b,.
Since Ey and Ej are topological, it follows that (zg,yg) € f and (g, 29) €
g, therefore c € f x g. O

We note that the topologies H, OPM and COT on L x $ coincide,
because of existence of vertical and horizontal planes, a product space
satisfies the bounded axiom. Let V be the space of all vertical planes and
let H be the space of all horizontal planes. Furthermore, let V=V UA
and H = H U A. We define an incidence relation (R3,V) (resp. (&3, B)
). Let p = (z1,y1,21) and ¢ = (x2,y2,22) be two distinct points. If
T1 = Z2, then we set pVp g = {21} x R If # 9, then there exists
a unique line pV ¢ = f X g, hence we can determine a unique vertical
plane V (resp. a unique horizontal plane H) such that p,q€ fxgC V
(resp. C H). Therefore, we set p Vg g=V (resp. =H).

LEMMA 2.3. The defined (3,2, 2)-geometry (R3,V) ((R3,H)) is topo-
logical.

PROOF. Since R%-planes are topological, it is easy to check that the
defined (3,2,2)-geometries are topological. O

Let A be a divisible partition in 3 and let \A and B be two systems
of subsets in P3. Furthermore, let A = AUA and B = BUA. Let (P3, A)
and (P3, B) be two (3,2,2)-geometries such that if for each (4, B) € AxB
with AN B # (), then AN B is closed in P? and homeomorphic to R.
It can be easily shown that (P3, AB,A) is an R2-divisible R3-space,
where AB = {ANB|(A,B) € Ax B,AN B # (0}. If the mapping
w: AxB— AB:(A,B) — AN B is continuous, then (P3, AB, A) is

also topological.

LEMMA 2.4. Let (R% L x $,A)g, x5, be the product space of two
standard R?-planes F; and E,. Then:

(1) The mappinga:V — L : {(z, f(z), 2)|z,z € R} — {(z, f(z))|z

€ R} and {z} x R? — {2} x R is a homeomorphism, where f € L.

(2) For all f x g e L xS let v(f x g) = {(=z, f(z),2)|z,z € R} € V.
Then the mapping v : L X & — V is continuous.

(3) The mapping 8: H — S : {(z,y,9(z))|z,y € R} — {(z, g(z))|x

€ R} and {z} x R? — {z} X R is a homeomorphism, where g € .

(4) For all f x g€ L xS let §(f x g) = {(z,y,9(z))|z,y € R} € H.
Then the mapping v : £L x & — H is continuous.
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(5) The mapping ® : VxH — L. xS : (V,H) — VAH isa
homeomorphism.
(6) The space L x I is homeomorphic to R%.

PRrROOF. (1) By definition of Hausdorfl-convergence, it is easy to check
that « is a homeomorphism.
(2) Let l,,l € L x & such that I, — . Let a,b € | with a # b. Then
there exist a,, b, € l, such that a,, # b,, a, — a and b, — b. Since
the projection P : R® — R? : (2,9,2) — (z,y) is continuous, it
follows that P(a,) — P(a), P(b,) — P(b) and P(a) # P(b). Since
(P(R®),P(L xQ)) = (R%, L), where P(L x Q) = {P()|l € L x 3}, it
implies that P(a,) VvV P(b,) — P(a) V P(b). Since P(ay) V P(b,) =
a(y(ln)) and P(a)V P(b) = a(y(l)), it follows that oy is continuous. By
(1), « is also continuous.
Proof of (3), (4) is similar to the proof of (1), (2).
(5) By definition of Hausdorff-convergence, the following mappings are
continuous: ® : VxH — LXxS: (VH) — VAH ¥:LxT —
VxH:fxg— (f CV,gC H). It is clear that ¥ o ® = id and
® oWV =1d, i.e., ® is a homeomorphism.
(6) See [9, Th. 2.10]. O

A pair of points (z1,y1,21) and (z2,ys2,22) is called vertical if z; =
Z9,y1 = Yo. A pair of points (z1,y1,21) and (za, y2, 22) is called horizon-
tal if £1 = z9,21 = 29.

LEMMA 2.5. Let E C R? be a plane of (R3, L x 3,A)g,xg,. Then:

(1) If E contains two vertical points, i.e., (z,y,21),(2,y, 22) € E with
21 # 29, then E is a vertical plane.

(2) If E contains two horizontal points, i.e., (z,y1,2),(Z,y2,2) € E
with y; 5 yo, then E is a horizontal plane. .

Proor. (1) Let p,q be two vertical points with p,g € E. By [9,
lemma 2.2], the joining line { := pV ¢ = {z} x {y} x R is contained in
E. Let a € E\ {z} x B2, and let V be a vertical plane with a € V and
[ CV.Then aVpandaVqlie on E. Consequently, E =V is a vertical
plane.

(2) The assertion can be proved as (1). a

THEOREM 2.6. Let E; = (R?%,£) and E> = (R?,S) be two standard
R2-planes, and let (R3,L x S, A)g,xEg, be the product space of Ey and
E,. If there exists a plane which is neither vertical nor horizontal, then
E), = (R?, L) is isomorphic to E; = (R?, Q).
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PROOF. Suppose that E is a plane which is neither vertical nor hori-
zontal. The projection P, : E — R? : (z,y,2) — (z,y) is continuous,
and since E contains no two vertical points, Pj is injective. By theorem
on the invariance of domain (see for example [10, III. 6]), Pi(E) C R?
is open and P, : E — P(E) is a homeomorphism. Let z,y € P,(FE)
with = # y. Let a,b € E with 2 = Pj(a) and y = P;(b), then aVv b C E.
Since t Vy = Pi(aVvb) C P(E)and zVy = Pi(aVb) € L, hence
P(E) is a subgeometry of E; = (R? L) which is open. By lemma
1.4, Pi(E) = R?, and for each line f x g C E, P/(f xg) = f € L.
It is clear that for each S; € A Pi(F N S;) is a vertical line. Hence
P, : E — (R?% L) is an isomorphism. Similarly, we consider the pro-
jection Py : E — R?: (z,y,2) — (z,2). Then P, : E — (R2,9) is
also an isomorphism. Therefore, (R2, L) is isomorphic to (R?, 3). O

Let (R3, L x $,A)g,x g, be the product space of E; and Es. Let ¥;
be the collineation group of E;, i = 1,2, which fixes each line z-const.
(hence §; : R? — R? : (z,y) —— (z,hi(z,y)). If 6 € 5,0 = 1,2,
then § := & X &5 : R — R® : (z,y,2) — (z,hi(z,y), ha(z, 2)) is
a collineation of (R3,L x S, A)E xE,- Let 1 x ¥y denote the set of
all collineations 6 = &1 x &3 with §; € ¥1 and §; € Xs. Let S be the
common induced action on the z-coordinate. Then < X1 x ¥, 8 > is a
collineation group of (R3,£ x &, A) g, xEg,-

THEOREM 2.7. Let Ey = (R? L) and E; = (R?,3) be two standard
R2-planes which are not isomorphic, and let (R3,L x $,A)E, xE, be
the product space of E; and Ey. Let ¥ be the collineation group of
(R3,L x S, A)EyxE,- Then ¥ is the group < X1 x 39,8 > .

Proor. Let v € ¥ and let R2<I’y> (resp. RZ, ,.) be the < z,y >-
coordinate plane (resp. < z,z >-coordinate plane). Since v maps the
sets {z} x R? onto itself, hence 7 is the form v(z,y, z) = (f(z), 9(z.y, 2),
h(z,y, z)). By Theorem 2.5, there exist no further planes, hence = is
an isomorphism in the vertical planes (resp. in the horizontal planes).
Therefore, v must be the form v(z,y,2) = (f(z),9(z,y),h(z,z)). It
follows that 7[R2<x’y> (resp. ’y|R2<zyz>) is a collineation of F (resp. Es),
which maps vertical lines onto itself, hence v €< X1 x 39,5 > . O

THEOREM 2.8. Let Ey = (R2, L;) and E; = (R?, L5) be two standard
RZ%-planes isomorphic to the real affine plane (R?, L), respectively. Let
7 (z,y) — (r+t,y), t € R be collineations of E1 (resp. E,). Then
(R3,£1 X La,A)g, xE, is isomorphic to the real affine R?-divisible R3-
space.
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PROOF. Let o : (R%,L£) — (R2,L;) be an isomorphism. Let 3 be a
collineation of (R?, £). Then the composition v := a3 is an isomorphism
from (R?%, L) to (R?%,£;). Since all vertical lines are in £ (resp. in L1)
and the full collineation group of (R2, £) is transitive on R? (resp. L), we
can choose 8 such that v := o8 maps vertical lines onto itself. Hence ~y
is the form v(z,y) = (f(z), g(z,y)), and we may assume that f(0) = 0.
By assumption, 7¢,t € R are collineations of (R%,£;). For all t € R
7/ = ¥~ 177y are collineations of (R?, £). Since 7] maps vertical lines onto
itself and {7/} is transitive on the vertical lines, Hence 7{ has the form
mi(z,y) = (x+h(t),*), where h is continuous and for all s,t € R h(s+t) =
h(s) + h(t). Since a continuous additive function is linear, it follows that
h is linear. Since y7{ = 77y, we have f(z + h(t)) = f(z) + t. From
f(0) = 0, putting z = 0, we get f(h(t)) = ¢t. Hence f is linear and we
may assume that y(z,y) = (z, g(z,y)). Let 1(z,y) = (2, 1(x,y)) (vesp.
yo(z,2) = (z,g2(x,2))) be an isomorphism from (R2 L) to (R? L;)
(resp. (R?,L5)). We define

T kY2t (maya Z) - (x,gl(w,y),gg(ax,z)).
Hence 71 * 72 is an isomorphism between the real affine R2-divisible
R3-space and (R3,£1 X [,Q,A)E] X Ep- O
2.1. (o, d)-space
Let E; = (R?, L) be the real affine plane. Let Ey = (R?,S) with
S = {{(z,g(x +n) +n)|z € R}n,n € R} U {{c} x R|c € R}, where

iz s x>0
= <
g(zx) {alxld L 2 <0 with0O<a<1<d

is a planar function.

The product space of E; and Es is called an (¢, d)-space. We note
that if (o, d) = (1,2), then by Theorem 2.8, the space is isomorphic to
the real affine R2-divisible R*-space. An (a,d)-space is induced from a
4-dimensional shift plane.

LEMMA 2.9. Let (o, d) # (1,2). Then the full collineation group ¥ of
Es = (R?,S) has dimension 3 and is the group

{(z,y) — (ax+£,ady+n) :a>0,& 1€ R}

Furthermore ¥ = X! for o # 1, and £ = X! < (z,y) — (—z,y) > for
a=1.

Proor. [12]. O
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THEOREM 2.10. Let (R3,L x §,A)g,xE, be an (o, d)-space with
(a,d) # (1,2). Then full collineation group ¥ of (R3, L x S, A)g,xE,
has dimension 6 and is the group

T a T t
Y —_ b ¢ Y + 1) R
z o z t3

a>0,c#0,bt; € Ri=1,2,3.
If o = 1, then the reflection to the vertical plane R x {0} x R is a
collineation.

PRrROOF. Let ¥; be the collineation groups of E;, i = 1,2, which fixes
each line x =const., and let S be the common induced action on z-
coordinate. Hence £; = {(z,y) — (z,bz + cy + §)|c # 0,b,€ € R},
Yy = {(z,2) — (x,z+7n)ln € R}, and S is the group S = {zr —
az + tla > 0,t € R}. By Theorem 2.7, the proof is complete. O

3. R2-divisible R3-spaces induced by planar functions

From now on we consider always the divisible partition A = {{z} x
R%|z € R}. In sections 3,4 we will introduce a method, construction of
topological R2-divisible R3-spaces. The affine plane in Lemma 3.1 is a
generalized type of the real affine plane.

LemMA 3.1. Let g : R — R be a continuous function and « : R —
R a continuous bijective function. We define an incidence structure
(R?, E;a) with the following lines:

(1) Al vertical lines {z} X R with z € R are in .Cg“a.
(2) The sets l(t,n) = {(z,g9(z) + ta(z) +n)|z € R} with t,n € R are
in L;a.
Then (R?,L%,) is an affine plane.

Proor. We first show that each pair p,q of distinct points is con-
tained in a unique line pV g € E’;’a. Since all verticals are in Cﬁa, we
will show that for each (z1,31), (2,¥2) € R? with z; # x5 there exists a
unique join line [ € Eﬁa such that [ = (z1,41) V (22, y2). Hence we have

the following equations:
g(z1) + ta(z1) + 1 = v1,
9(x2) + ta(z2) + 1 = y2.
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Therefore, t(a(r1) — a(z2)) = y1 — y2 — g(x1) + g(x2). Since a(z) is
bijective, it follows that a(x;) — a(zs) # 0. Hence there exists a unique
t € R which satisfies the given equations. Thereby the corresponding
n € R is uniquely determined. We next show that (Rz,ﬁ_g‘,a) holds the
parallel axiom, i.e., for each line [ and each point p = (u,v), there is a
unique line which passes through p and is parallel to [.

Case 1: Let the given line [ be vertical. Then there exists obviously a
unique line h with INh =0,p € h.

Case 2: Let the given line [ be not vertical. Hence there exist 9,10 € R
with [ = {(z,9(c) + toa(x) + m0)lc € R}. Let p = (u,v) with p &, i.e.,
g(u) + toa(u) + no # v. We can calculate the pencil of p:

E;ap = {l(t,v — g(u) ~ ta(u))|t € R} U {u} x R.
Let t := tg. Then we get a line
h={(z,9(z) + toa(z) + v — g(u) - toa(u))|z € R} € Li, .
Since p & [, it implies that [N h = @ with p € h. We have to show

that h is uniquely determined. Let ¢t # tg. Then we have the following
equations:

9(z) + toa(z) + 1m0 = 9(2) + ta(z) + v — g(u) — ta(u).
Therefore, a(z)(tg — t) = v — g(u) — ta(u) — ng, and so
a(z) = (v — g(u) — ta(u) —no)/(to — ).
Since « is bijective, it follows that [Nk # @ for all k(# h) € /3_?;4,%' Hence
h is uniquely determined. O

LEMMA 3.2. Let (R?, E;a) be an affine plane as in lemma 3.1. Then
(R2, E;a) is isomorphic to (RQ,Eéa), ie., g(x) =0.

PRrOOF. Let (Rz,ﬁﬁa) and (Rz,ﬁéa) be two affine planes. Define
P (Rga‘c;a) - (RQ,Léa) : (:c,y) - ($,—g(£L‘) +y)‘

Then ¢ is a homeomorphism. Furthermore, (z,g(z) + ta(z) + ) —
(z,ta(x) + n). Hence the proof is complete. O

THEOREM 3.3. Let f : R — R be a continuous planar function, let
g : R — R bea continuous function and let « : R — R be a continuous
bijective function. We define an incidence structure (R3,Lr,A) fg.a-l
with the following line set

Lr:= {{(IL‘,f(.’l? - k) +§,g(m — k) +ta(x) +'I7)ICB € R}l
k,&,n,t € R}
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Then:

(1) (R3, L1, A) f.g.a-1 is a topological R?-divisible R3-space.
(2) The sets

Ere = {(z,f(z — k) + & 2)|z,2 € R}

are planes for k, & € R.
(3) If g := 0, then (R3 Ly, A)f.g.0-1 is a product space.

PROOF. (1) We first show that (R Lr,A)44-1 is an R2divisible
R3-space. Let (x1,y1,21), (z2,Y2,22) in R® with z; # z,. Hence we
consider the following equations:

fler—k)+&=y1,9(x1 — k) + ta(z)) + 1 = 2,

flza — k) + & =y2,9(z2 — k) + ta(zz) + 1 = 2.

Since f is planar, there exist k£ and £ uniquely. Since « is bijective, there
exist ¢ and 7 uniquely. Hence (R3 L7, A); -] is an R2-divisible R3-
space. Next we have to show that (B3, L7, A) f.9,-1 is topological. Let
(an = (TnyYn,2n))nen and (b, = (Un,Vn,wn))nen be two convergent
sequences in R® with the limits a = (g, yo, 20), b = (ug, vo, wo), To F Uo.
We denote the join lines a, V b, and a V b as the forms:

an V by = {(z, f(x — kn) + &, 9(z — kp) + tha(z) + n,)|z € R},

aVb={(z, f(z — ko) + &0, 9(x — ko) + toa(z) + mo)|z € R},

kn’ tn:ﬁnann € R7 k(); thé-O; o € R.

Let fo(k) := f(zn — k) — f(un — k) and fo(k) := f(zo — k) — f(uo — k).
Then ky, and kg are the solutions of the equations f,(k) = y, — v, and
folk) = yo — wo, i-e., kn = f7 Y (yn — vn) and kg = fo—l(yo — vg). Since
limy 00 fr(k) = fo(k) and lim,—oo(yn — vn) = Yo — vo, it follows that
kn — ko. Since =, — xg and k, — kg, therefore, £, — &j. Since
an — a and b, — b,

nl_lfgo[g(xn —kn) — g(un — kn) + tn(a(zn) — a(un))]

= g(xo — ko) — g(uo — ko) + to(a(zo) — a(up)).

Since z, — %, un — ug and k, — kg, it also implies that ¢, — #g,
and so 7, —— np. This implies also that a, Vb, — a V b. Hence
(R3,Lr1,A)f,4.0-1 is topological.

The assertions (2) and (3) are clear. O
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We note that the method of construction in Theorem 3.3 can be
generalized in the following way. Let (R2, L) be a standard R2-plane
and let g : R — R be a continuous function. For each linea: R — R
in £ we take a new line g+o : R — R. Let L, denote the set of all lines
g+ a with & € £ and all verticals. Then we get an RZ-plane (R?, L)
which is isomorphic to (B2, £). We apply the method in Theorem 3.3
and get a topological R?-divisible R3-space. In next theorem we give

variations of Theorem 3.3.

THEOREM 3.4. Let f : R — R be a continuous planar function,
let g : R — R be a continuous function and let o : R — R be a
continuous bijective function. We define the following R?-divisible R3-

spaces:
(1) (R31 ‘CII7 A)f,g’a‘II Wlth

Lir = {{(z, f(z — k) + £ g(x) + ta(z — k) + )|z € R}

k,&,m,t € R}.
(i) (R3, Lrrr,A)fg.0-III with

Lrr={{(z flz—k)+ &gz — k) +ta(z — k) +n)|z € R}
k,&,n,t € R}.
(iif) (R3, Ly, A)fga-I’ with
Ly ={{(z, flx — k) +§&9(z - &) +ta(z) + )|z € R}
k,&,n,t € R}.
(iv) (R3,£111,A)f’g‘a—ffl with
L= {{{z, f(x — k) + & g(x) + ta(z — ) +n)|z € R}|
k7 67 n?t E R}'
(V) (RB,EHI/,A)f’g,a—III, with
Lrrr = {{(z, flx — k) + &, g(x — &) +ta(z — &) +n)|z € R}

k&, n,t e R}
(vi) (R® Liv,A)fgo-IV with

Ly = {{(z,flz — k) + & gl — k) +talz - §) + 1)z € R}

k&t € R}
(vii) (R3,Ly,A)fg.q-V with

Ly = {{(=z, flx — k) + & g9(z = &) + ta(z — k) + )|z € R}
k,&,n,t e R}
Then:
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(1) Each defined space is a topological R2-divisible R3-space
(2) The sets are planes

Ek»§ = {(.’E,f(.’l? - k) + &, Z),(L‘,Z € R}
for k,£ € R
PROOF. Proof is similar to the proof of Theorem 3.3. O

LEMMA 3.5. Let oo : R — R be a continuous bijective function with
a(—z) = —a(z),z € R. We define an incidence structure (R?, LB) with
the following lines:

(1) All vertical lines {z} x R with z € R are in L5.
(2) All horizontal lines R x {y} withy € R are in LZ.
(3) The sets {(z,e'a(z) + n)|z € R} and {(z,e'a(—z) + n)|lz € R}
with t,n € R are in 5.
Then (R?,LB) is an affine plane.

PROOF. We may assume that « is strictly monotonic. We first show
that for each pair of distinct points there exists a unique line [ € £5
which contains the given two points. Since all vertical and horizontal
lines are in £2, we only show that for (z1,11), (z2,y2) € R? with 21 < z9
and y; # ys there exists a unique join line | € LB with | = (z1,31) V
(z2,y2). Hence we consider the following equations:

eta(zy) +n =y, ealzy) +n=1ys or

ela(—z1) +n =y1, ea(~x2) +n = ye.

Hence e = (ys — y1)/(a(£z2) — a(£z1)). Therefore we can choose t,n €
R uniquely. It implies that there exists a unique line I € LB with
I = (z1,71) V (22,72). We next show that (R2,£Z) holds the parallel
axiom, i.e., for each line [ and each point p = (u,v), there is a unique
line which passes through p and parallel to [.

If [ is a vertical or a horizontal line, then there exists obviously a unique
join line p € h with I M A = §. Assume that [ is neither vertical nor
horizontal. We have the following two cases.

Case 1: There exist tg,n9 € R with [ := {(z,e®a(z) + no)|r € R}. Let
p= (u,v) with p €1, i.e., e®a(u) + ng # v. We can calculate the pencil
of p:

Efp = {{(z,e'a(xz) + v — e'a(tu))lz € R}t € R}U{u} x RUR x {v}.

Let ¢ := tg. Then there exists a line & := {(z, e a(z) + v — el a(u))|z €
R} € Efp. Since p ¢ [, it follows that [Nk = @ with p € h. Next we show
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that h is uniquely determined. Let ¢t # 3. Then we have the following
equation
efa(z) + no = eta(tz) + v — ela(£u).

Therefore, a(x) = (v — eta(u) £ ng)/(e*® F et). Since « is bijective and
e F et # 0, it follows that [ Nk # @, for k(# h) € L£Z . Hence h is
uniquely determined.

Case 2: There exist tg,m9 € R with [ := {(z,e"a(—z) + no)|z € R}.
This case can be proved as the first case. (]

THEOREM 3.6. Let o : R — R be a continuous bijective func-
tion with a(—z) = —a(z), z € R. We define an incidence structure
(R3, L, A) with the following line set

Lo = {{(z,mz + & +e'a(z —m) +n)|z € R}m,&,n,t € R}.
U{(z, mz + £,n)|x € R}|m,&,n € R}. Then:

(1) (R3,L,, A) is a topological R?-divisible R3-space.
(2) The sets are planes

Em,E = {(.’E, mz + §,U)|CL’,’U € R}»
E, = {(z,u,n)|z,u € R}
for m,€,n € R.

PRrOOF. Proof is similar to the proof of Theorem 3.3. O

4. H-spaces and spiral spaces

4.1. H-spaces

DEFINITION 4.1. An R?-plane (R?%,Q) is called h-admissible if the
following conditions hold:

(1) All verticals {z} x R with z € R are in S.
(2) All translations (z,y) — (z+&,y+n)(&,1 € R) are collineations
of (R%,9).
(3) The reflection «y : (z,y) — (z,—y) is a collineation of (R2,S).
We note that all the horizontals R x {y} with y € R are in &, because
the reflection v is a collineation of (R?,S).

Let (R?,Q) be h-admissible. We identify (R2?,3) with the horizontal
plane R? x {0} in R® = {(=,y, z)|z,y,2 € R}. We apply all translations
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of R3 and all rotations with a horizontal axis and get from S a line set
L in R3. Formally we have the following definition: Let

1
Da:{ cosa sinq :aER}.

—sina cosa

DEFINITION 4.2. Let (R2,3) be a h-admissible R2-plane. We define
a line set £ := {D,(1) + (0,£,n)|]l € S (not vertical) ,a € R,€,m € R}.
(R3,L,A)R is called a H-space (generated by the h-admissible plane
(R?,9)), where A = {{z} x R?|z € R}.

THEOREM 4.3. Let E = (R?,S) be h-admissible, and let (R3,L,A)r
be the H-space generated by (R?,S). Then:

(1) (R3,L,A)r is a topological R2-divisible R3-space.

(2) For given a,&,m € R, Do(E) + (0,£,7m) is a plane of (R?, L, A)g.

(3) (R?,B) is a topological (3,2,2)-geometry, where B = {D,(FE) +
(0,€,m)]e, &, n € R}.

PROOF. It is clear that each line [ € £ is closed in R® and homeomor-

phic to R. We first show that (R3,L,A)s is an R2_divisible R3-space.
Let z,y € R? with z; # y1.
Case 1: (z2,73) = (y2,y3). Let E = R?x {0} C R® and let o € R
with (0, 22, 23) € Do(E). Hence let u € R with Do (0,u,0) = (0,22, z3).
Then =Dy (R x {(u,0)}) € £ and z Vy = [. Next we have to show
that [ is uniquely determined. Let 38,§,7 € R and h € Q with z,y €
Ds(h) + (0,€,n). Let 2,y € h with z = Dg(z’) + (0,¢,n) and y =
Ds(y') + (0,€,m). Then it follows that

z = (2}, zhcos B+ & —wysin B+ n),

y = (y},yacos B+ & —ypsin B +1).

Therefore, i = z1, y; = y1, hcos B = yycos B and z4sin 8 = y; sin 3,
so that z§, = yj, i.e., h is a horizontal line, and Dg(h) + (0,§,n) =
R x {(:Eg,:]);;)} = .

Case 2: (z2,23) # (y2,93). Let @ € R with (0,y2 — 2, y3 —3) € Do(E).
Let u € R with Dy (0,u,0) = (0,y2 — z2,y3 — z3) and let g := (21,0,0) V
(y1,4,0) € S. Then ! := Dy(g) + (0,z2,23) € L with zVy = [. Next
we show that [ is uniquely determined. Let now 3,¢,n € R, h € & with
z,y € Dg(h) + (0,&,7m). Let 2’y € h with z = Dg(z’) + (0,£,1) and
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y = Dg(y') + (0,€,m). Then it follows that

z = (z},zhcos B+ & —zhsinB+n) and

y = (41, yacos B+ & ~yasin B+ n)

= (y1,ucos & + z9, —usina + x3).
This implies z; = z,y1 = ¥}, and
(y2,y3) = (vhcos B+ &, —yhsin 8 + 1) = (ucos & + xg, —usin o + z3).

Since xo = zhcos f + € and z3 = —zhHsin 8 + 7,
(ucos at+xg, —usin a+xs) = (ucosa+zhcos f+E&, —usin a—x) sin S+1n)

= (y2,y3). This follows that ucosa = (yj — z45) cos B, usina = (yj —

zh) sin 3, therefore, | y5 — =45 |=| u |. There exists also a § € {—1,1}
with y — 25, = du(# 0). Therefore, cosa = §cos 8 and sina = §sin f.
We consider the following two cases: § =1, § = —1.

§ =1. Then yh—zh = u, B = a+2rnforan € Z, so that D, = Dg. Since
(21,0,0) = (2, 25,0) — (0,25,0) = 2’ — (0,25,0) and 3 — (0,25,0) =
(¥}, v — x5,0) = (y},w,0), This implies h — (0,25,0) = g, therefore,
h = g+ (0,25,0). Furthermore it implies that

D5(0a$,270) = (0a$,2 COSﬂ, —CL'/2 Sinﬁ) = (O,(L‘z - fa-’rf‘l - 77),
therefore,

Dﬁ(h) + (076777) = Da(g) + (071.2 - f,.’L‘g - 77) + (0,5,7))

= Da(g) + (0,1‘2,1}3) =1
§=-1.Theny)—z) = —uand =a+(2n+ )7 foran € Z. Let now

o be the mapping (z,y,z) — (z, -y, 2z). Then o|FE is a collineation of
(R%, Q). Since 2’ — (0,24, 0) = (z1,0,0) = (z1,0,0)7,

y, - (0737/270) = (yllayé - $,270) = (yi,—u,O) = (yllau70)aa

therefore h — (0,25,0) = ¢, i.e., h = g° +(0,25,0). For all p € E it
follows that D3(o(p)) = Dq(p). Then it follows that

Ds(h) +(0,§,m) = Dg(o(g)) + (0,22 — §, 23 — 1) + (0,€,7)

- Da(g) + (0a$27$3) = L.
We have shown that for z,y € R? with 1 # y; there exists a unique
line, i.e., (R3, £, A)R is an R2-divisible R3-space.
We have to show that (R, L, A)g is topological. Let (by)nen be a se-
quence in R3 b € R3 and 0 # b, — b # 0. Let [ be the horizontal line
passing through 0 and !’ passing through b. We separate two cases:
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Case 1: | £ 1. Let E = R? x {0} and @ € R with b € F' := D4(E).
Since b, — b € I, it follows that for sufficiently large n b, ¢ [. Since
b, — b, there exist o, € R with a, — 0 and b, € Dq, (F). Then
D_q, (by) € F and D_,, (by) — b # 0. Since F is an R*-plane, it
implies that 0V D_,,, (by,) — 0V b. This implies also

0V by = Do, (0V D_g,, (b)) — OV b.

Case: 2. | =1 Let E = R% x {0}. Then [ C E. It is also by = b3 = 0.
We may assume that b, ¢ I for all n € N. Choose 0 < o, < 7 with
v, == D, (by,) € E. Since b, — b,ba = b3 = 0, it is also b, — b.
Since E is an R2-plane, it implies that 0V b/, — 0V b = I. We will show
that 0V b, — [. Let = € . Then there exist z,, € 0V b}, with z, — .
Let yn := D_q, (zn) € 0V by, and since z2 = 23 = 0, it follows that
yn — 2. Now let = € lim,—,oo sup(0V b,). Then there exists a sequence
ng of N and z,, € 0V by, with z,, — . If z ¢ [, by case 1, it implies
that 0V z, — 0Vz, but 0Vz, =0V bn,, therefore,

[ C lim inf(0Vb,) C lim inf(0Vb,,)=0Vz,
n—oo ko0

a contradiction, hence z € [. By reduction lemma, (R3, £, A)R is topo-
logical. The assertion (2) is clear.

(3) We define an incidence relation (R, B). Let P : R® — R%  __ bethe
projection on the < y, z >-coordinate plane. Then (P(R3), P(B)) is the
real affine plane with P(B) = {P(B)|B € B}. Let p = (x1,%2,23) and
g = (2,92, z2) be two distinct points. If (y1,21) # (y2,22), then there
exists a unique join line P(p) vV P(q) = P(B), hence we set pVp ¢ = B.
If (y1,21) = (y2,22), then we set pvp = R% x {#}. Since P : B —
P(B) : B — P(B) is a homeomorphism, the defined (3,2,2)-geometry
is topological. |

ExaMPLE 1. Let p, ¢’ : R — (0, 00) be strictly monotonic functions.
Let Iy := {(z,¢(z))|z € R} and I_ := {(z, —¢(z))|z € R}. We define
an incidence structure (R?,$,) on R? with the following lines:

(1) All verticals {z} x R with x € R are in .
(2) All horizontals R x {y} with y € R are in Q.
(3) All translations of [ and [_ are in .

Then (R?,S,) is a h-admissible R?-plane.
PROOF. We have to show that for a pair of distinct points (z1,y1) and

(z2,y2) there exists a unique line in 3. Since (R?, +) is as a collineation
group admissible, we will show that for two points (0,0) # (z,y) there
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exists a unique line in Y. Since two sets R x {0} and {0} x R are lines,
we may assume that z # 0 and y # 0. Then we have the following
equations: p(z+&)—p(§) =y or —p(z+n)+¢(n) =y, §,n € R. By the
mean value theorem, we have ¢'(c; + &) = y/z or —¢/(ca + 1) = —y/z
for some cj,ce € R. Since ¢’ is also bijective, we can determine a unique
& or 7. O

4.2. Spiral spaces

LEMMA 4.4. Let f : R —> R%: z — (u(z),v()) be a mapping such
that for each d € R\ {0} the mapping f;: R — R?:x — (u(z +d) —
u(z),v(z+d) —v(zx)) is injective. Let l(k,&,n) = {(z,u(z+k)+ & v(z+
k) +n)|z € R} C R® with k,&,n € R. Then for (k1,£1,m) # (k2, £2,m2)
|L(k1,€1,m) N ik, &2, m2)| = 0 or 1.

ProOF. Let f1 : R — R%: fi(z) = (u(z + k1) + &1, v(x + k1) +m)
and fo: R — R?: fo(z) = (u(z + k2) + &2, v(z + k2) +72).
Case 1: ky = kg = k. Then (&1,m1) # (§2,7m2), hence (& — &2,m1 — m2) #
(0,0). Since the mapping f1 — f2 : R — R?: 2 — (&1 — &a,m1 — 2) #
(0,0) is constant, it follows that (fi — f2)(z) # (0,0) for all x € R.
Therefore, Il(kh gla T]l) N l(ka 623 ")2)| = 0.
Case 2: ki # k2. Then the mapping f1 — fo: R — R%: (f1 — fo)(z) =
(u(z+k1) —u(z+k2) +&1—&2,v(z+k1) —v(z+k2) +m —n2) is injective,
because fy is injective. In this case |I(k1,&1,m) N I(ke,&2,m2)| = 0 or
1. |

LEMMA 4.5. Let ¢,¢’ : R — (0,0) be strictly monotonic functions.
For each d € R\ {0} we define the function

g:R—(0,00) : £ — p(z + d)% + ¢*(z) — 2¢(z + d)p(x) cos d

~ (pla +d) - p(a))? + 20(x + d)p()(1 ~ cos d).
Then g is bijective.

PrOOF. Since
9'(z) = 2(p(z + d) — p(z))(¢'(z + d) — ¢'(z))
+2(¢' (z+d)o(z)+p(z+d)¢ (x))(1—cos d) > 0, hence g is injective.
Since

9(z) = (p(z + d) — ¢())* + 2p(z + d)p(z)(1 - cos d)

d
=[]+ 2)at + 260 + Dpla)(1 - cosd)

= [d¢'(c + z)]* + 2¢(z + d)p(z)(1 — cosd) for 0 < ¢ < d.
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Therefore, limg—, oo g(z) = 0,lim;_ g(x) = 00, hence g is surjective.
O
We construct an R2-divisible R3-space which is induced from the

mapping
f:R— R*:z — (p(z)cosz,p(z)sinz),

where @, ' : R — (0, 00) are strictly monotonic functions.

LEMMA 4.6. For each d € R\ {0} the mapping
fi:R— R?:
z — (p(z + d) cos(z + d) — () cos z, p(x + d) sin(z + d) — p(z) sin z)
is injective.

PrOOF. For 1,22 € R let fy(z1) = f4(z2). Hence
(¢(z1 + d) cos(z1 +d) — p(z1) cos z1, p(z1 + d) sin(z1 + d) ~ p(z1) sinz1)
= (p(x2+d) cos(za+d)—p(x2) cos Tg, p(xa+d) sin(za+d)—p(z2) sin z2).
Then
(1) (1 +d) cos(z1+d) —p(z1) cos z1=p(z2+d) cos(za+d) —p(x2) cos T2,
(2) p(z1+d) sin(z1 +d) —p(z1) sin z1=p(z2+d) sin(zz2+d) — p(z2) sin z2.
We calculate (1) + (2)?
o(z14+d)?+(21)? —2¢(z1+d)p(z1) (cos(x +d) cos z1+sin(z1 +d) sin z1)

=p(z9+d)?+p(x2)?~20(z2+d)p(z2) (cos(z2+d) cos zo-+sin(z2+d) sin z3).
Also
p(z1 + d)* + p(21)* — 2(z1 + d)p(z1) cos d
= p(zg + d)? + p(22)? — 2¢(z2 + d)p(z2) cos d.
By lemma 4.5, g is injective, hence 1 = 3. O

Let l(k,€,n) := {(z, p(x+k) cos(z+k)+&, p(z+k) sin(z+k)+n)|z € R}
By lemma 44?457 |l(k1’€17771) N l(k’2’€2)772)| =0 or 1 for (klaélanl) 7é
(ko,&2,m2). Next we consider the pencil of 0 = (0,0,0), ie., Ly =
{{(z, p(z +k) cos(z+k) — (k) cos k, p(x+ k) sin(z +k) — (k) sink)|z €
R}|k € R}. We rotate the pencil L{, with the z-axis, in order to get the
full pencil of 0, i.e.,a € R

1 z
(Dg =) ( cosa sina ) ( oz + k) cos(z + k) — p(k) cos k ) =
—sina  cosa ¢z + k) sin(z + k) — p(k)sink
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( (¢p(x + k) cos(x + k) — @(k) cos k) cos a + (p(z + k) sin(z + k) — p(k) sin k) sin ) .
(plz + k) cos(z + k) — (k) cos k)(—sin o) + (¢(x + k) sin(z + k) — p(k) sin(k)) cos

Then we have the full pencil of (0,0, 0):
Lo = {{(z, (p(z + k) cos(z + k) — (k) cos k) cos a + (p(z + k)
sin(z + k) — p(k) sin k) sin a, (¢(x + k) cos(z + k) — (k) cos k)
(—sino) + (¢(z + k) sin(z + k) — ¢(k) sin(k)) cos a)|z € R}
[k,a € R} U{(z,0,0)|z € R}.

LEMMA 4.7. For (0,0,0),(z,y,2) € R% x # 0 there exists a unique
Jjoin line I € L.

PRrROOF. Case 1: Let z # 0, (y, 2) = (0,0). Then [ := {(«,0,0)|]z € R}
is the unique join line.
Case 2: Let = # 0, (y, z) # (0,0). Then we have the following equation

((plx + k) cos(z + k) — (k) cos k) cos a + (p(x + k) sin(z + k)
— (k) sink)sin o, (o(z + k) cos(z + k) — (k) cos k)(— sin &)
+ (p(z + k) sin(z + k) — (k) sin(k)) cos ) = (y, 2).

Next we will show that there exists a unique k € R. Through calculation
we get the following equation

oz +k)° + o(k)? — 20(x + k)p(k) cosz = y* + 2%,z # 0, (y, 2) #0.
Hence g(k) := o(z + k)% + @(k)? — 2p0(z + k) (k) cos z = 32 + 22.

By lemma 4.5, g is bijective. Therefore there exists a unique k € R. It
follows that the rotation D, is also uniquely determined. O

THEOREM 4.8. Let f : R — R? : x — (p(x)cosx,p(x)sinx),
where p,¢' : R — (0,00) are strictly monotonic functions. Then there
exists a topological R?-divisible R3-space which is induced from the
graph(f) with the following line set
L={{(z,p(z+k)cos(z+k—a)+&p(x+k)sin(z+k—a)+n)|lz € R}|
k,a,6,m € R} U{(z,&,n) | z € R}¢,n € R}. This R%-divisible R3-space
is called a spiral space generated by f.

PROOF. By lemma 4.7, and since (R3,+) is a collineation group, for
(1,91, 21), (T2, 12, 22) € R3 with z; # x4 there exists a unique join line.
We have to show that this space is topological.

Let (by = (Zn, Yn, 2n))nen be a scquence in R3, b = (20, ¥o, 20) € R and
0 # b, — b # 0. We have the following two cases:
Case 1: b & {(2,0,0)|z € R}, ie., (y0,20) # (0,0). Since b, — b, it
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follows that for sufficiently large n € N b, ¢ {(z,0,0)|z € R}. For all
n € N we may assume that b, ¢ {(z,0,0)|z € R}. We consider the join
lines 0 V b, and 0 V b as the forms 0V b, :=

1 T
{ cosa, sina, p(x + kn) cos(z + k) — @(kn ) cosky, ’
—sina, cosay, oz + k) sin{z + k) — o(k,) sink,

T € R},an,kn € R,

1 T
0Vb:= { cosa sino oz + k) cos(z + k) — p(k)cosk I
—sina cosa o(x + k) sin(x + k) — p(k)sink
r€R o keR.

We write simply 0V b, = {(z, hn(z), ks (z))|z € R} and 0Vb = {(z, h(z),
k(z))|z € R}. Set

an(k) == @z, + k)2 + p(k)? = 20(zy + k)p(k) cos z,,

g9(k) == p(zo + k)* + 0(k)? — 20(x0 + k)i (k) cos zo.
By lemma 4.5, g, and g are homeomorphisms, and k&, , k are solutions of
the equations g, (k) = y2 +22 and g(k) = y3 + 23, i.e., kn, = g7  (y2 +22)
and k = g71(y2+22). Since limy—oo0 gn (k) = g(k) and lim, o0 (y2+22) =
y? + 22, it follows that k, — k. Since b, — b, hence lim,_,o0 COS 0, =
cosa and lim,_,o sine, = sina. Let (z1,y1,21) = (21, h(z1), k(z1)) €
0vb. Then (171, hn(l‘l), kn (1‘1)) € 0Vb,, and limn_,oo(xl, hn(xl), kn(l’l)) =
(z1, h(z1), k(z1)). This implies that 0 V b C lim,_, inf(0 V b,). Since
kn, — k, lim, ., cosa, = cosa and lim,_ . sina, = sing, it fol-
lows that limy, o sup(0Vb,) C 0Vb. It implies also that 0vVb, — 0Vb.
Case 2: b € {(z,0,0)|z € R}, i.e., (v, 20) = (0,0). We may assume that
bn & {(2,0,0)|z € R}. Since k, = g;; 1 (y2+22) and lim,, oo (¥2+22) = 0,
This follows that lim,_,. kr, = —0c. Hence we have 0V b, — 0V b. By
reduction lemma, this space is topological. O

In [1, 3, 4, 5] Betten studied topological R3-spaces. An incidence struc-
ture (P3, L) is called a topological R3-space if (1) each line | € £ is
closed in P? and homeomorphic to R, (2) each pair p,q of distinct
points is contained in a unique line p V ¢ € £ and (3) the mapping
Vi P3x P3\ A — L is continuous, where A = {(p, p)|p € P3} denotes
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the diagonal and £ carries the topology of Hausdorfl-convergence. Nat-
urally one can ask for extension of topological R2-divisible R3-spaces
to topological R3-spaces. For example H-spaces can be extended as
topological R3-spaces if we regard each vertical plane as the real affine
plane. Conversely, if topological R3-spaces contain suitable planes which
become a divisible partition in 73, then we get from these spaces topo-
logical R2-divisible R3-spaces.
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