TOPOLOGICAL R²-DIVISIBLE R³-SPACES

JANG-HWAN IM

ABSTRACT. There are many models to study topological R^2 -planes. Unlike topological R^2 -planes, it is difficult to find models to study topological R^3 -spaces. If an 4-dimensional affine plane intersects with R^3 , we are able to get a geometrical structure on R^3 which is similar to R^3 -space, and called R^2 -divisible R^3 -space. Such spatial geometric models is useful to study topological R^3 -spaces. Hence, we introduce some classes of topological R^2 -divisible R^3 -spaces which are induced from 4-dimensional affine planes.

1. Introduction

In this paper we introduce a new class of topological space geometries, so-called topological R^2 -divisible R^3 -spaces. In particular we give lots of models of this space geometry. A topological projective plane \mathcal{P} is a projective plane with point set P and line set \mathcal{L} , where both P and \mathcal{L} carry topologies such that the operations of joining and intersecting are continuous in their domains of definition. A topological projective plane is called *n*-dimensional if P and \mathcal{L} are *n*-dimensional, locally compact, connected topological spaces. As in the case of projective planes, we will call a locally compact, connected affine plane n-dimensional if its point set and line set are n-dimensional, locally compact, connected topological spaces. The lines in 2-(4-)dimensional affine planes are homeomorphic to $R(R^2)$. For general information about topological planes the reader is referred to [16]. Since the fundamental papers of Salzmann [14, 15], Betten has tried to classify all 4-dimensional compact flexible projective planes. A topological projective plane is called flexible if the collineation group has an open orbit in the space of flags (flag=incident point-line pair). In a series of papers of Betten and Knarr many different types of 4-dimensional projective planes were found. These planes

Received June 8, 2000.

²⁰⁰⁰ Mathematics Subject Classification: 51H10.

Key words and phrases: topological geometry, spatial geometry.

can be represented by 4-dimensional affine planes, and R^2 -divisible R^3 spaces are derived from 4-dimensional affine planes. We can regard an R^2 -divisible R^3 -space as an intersection of a 4-dimensional affine plane and R^3 . In order to explain of this geometrical structure, we consider the classical 4-dimensional affine plane A_2C over the complex field Cand the induced R^2 -divisible R^3 -spaces. The affine plane A_2C consists of point set $C \times C$ and the following subsets of $C \times C$ are called lines: $L(s,t)=\{(x,sx+t)|x\in C\}$ for $s,t\in C,\ \{c\}\times C$ for $c\in C$. If we identify C^2 with $R^4=\{(x,y,u,v)|x,y,u,v\in R\}$, then we can identify the lines with the following forms: $L(a, b, \xi, \eta) = \{(x, y, ax - \xi, \eta) \in \{(x, y, ax - \xi, \eta)\}$ $|by + \xi, ay + bx + \eta||x, y| \in R$ for $(a, b, \xi, \eta) \in R^4$, $\{(x, y)\} \times R^2$ for $(x,y) \in R^2$. Let $R^3_{x=0} := \{(0,y,u,v)|y,u,v \in R\}$ and let $l(a,b,\xi,\eta) := L(a,b,\xi,\eta) \cap R^3_{x=0} = \{(0,y,-by+\xi,ay+\eta)|y \in R\}$. \mathcal{L} denote the set of all lines $l(a,b,\xi,\eta)$ with $(a,b,\xi,\eta) \in R^4$. If we identify $R^3_{x=0}$ with $R^3 = R^4$. $\{(y,u,v)|y,u,v\in R\}$, then we get a geometrical structure $(R^3,\mathcal{L},\Lambda)$ on R^3 , that is, for two points $(y_1, u_1, v_1), (y_2, u_2, v_2) \in R^3$ with $y_1 \neq y_2$ there exists a unique joining line $l(a, b, \xi, \eta)$, and $\Lambda = \{\{y\} \times R^2 | y \in R\}$ is a partition of R^3 . In the same way we get also a geometrical structure on $\hat{R}^3_{y=0} := \{(x,0,u,v) | x,u,v \in R\}$. Hence we have an abstraction, socalled R^2 -divisible R^3 -spaces. The two geometrical structures are equal to the classical \mathbb{R}^3 -space without lines on the vertical planes $\{x\} \times \mathbb{R}^2$ with $x \in R$. We call the classical R^3 -space without lines on the vertical planes $\{x\} \times \mathbb{R}^2$ with $x \in \mathbb{R}$ the real affine \mathbb{R}^2 -divisible \mathbb{R}^3 -space. In the real affine R^2 -divisible R^3 -space on $R^3 = \{(x, y, z) | x, y, z \in R\}$, we can consider two projections on $\langle x, y \rangle$ -coordinate plane and $\langle x, z \rangle$ coordinate plane, respectively. We get also two affine planes on $\langle x, y \rangle$ coordinate plane and $\langle x, z \rangle$ -coordinate plane, respectively, where the line set is the set of all projections of lines in \mathbb{R}^3 on $\langle x, y \rangle$ -coordinate plane and $\langle x, z \rangle$ -coordinate plane, respectively. In a series of papers of Betten and Knarr we have lots of examples of R^2 -divisible R^3 -spaces which are induced from 4-dimensional affine planes.

After inspection of all flexible 4-dimensional translation planes we see: the induced R^2 -divisible R^3 -spaces by translation planes are the real affine R^2 -divisible R^3 -spaces. The affine planes in [2] give rise to R^2 -divisible R^3 -spaces which are non-classical, that is, if we consider two projections on $\langle x,y \rangle$ -coordinate plane and $\langle x,z \rangle$ -coordinate plane, respectively, one of the projection is the real affine plane and the other is a Moulton plane. In [8] Knarr studied 4-dimensional shift planes. The shift planes give also rise to non-classical R^2 -divisible R^3 -spaces. In this case one of the projection is the classical affine plane and the other is

a 2-dimensional shift plane. Conversely, with these observations we can reconstruct R^2 -divisible R^3 -spaces, so-called product spaces (see 2.1). In this viewpoint one of the induced R^2 -divisible R^3 -spaces in [2] are the product spaces of the real affine plane and a Moulton plane. The R^2 -divisible R^3 -spaces which are induced from 4-dimensional shift planes are the product spaces of the real affine plane and a 2-dimensional shift plane.

The main purpose of this paper is to give many examples of this geometry. It may give a motivation for studying topological R^2 -divisible R^3 -spaces continuously. First we introduce the class of product spaces and investigate some related topics. Using Theorems 2.5 and 2.6, we determine the collineation group of an (α, d) -space which is induced from a 4-dimensional shift plane. In section 3 we introduce different types of R^2 -divisible R^3 -spaces which seem to be a generalization of product spaces. These types of R^2 -divisible R^3 -spaces arise from [6, 8]. In section 4 we give more examples of topological R^2 -divisible R^3 -spaces. We are interested in topological R^2 -divisible R^3 -spaces, because the induced R^2 -divisible R^3 -spaces from 4-dimensional affine planes have already topological structure. We start with some basic definitions.

Let X be a topological space and $(A_n)_{n\in N}$ be a sequence of subsets of X. Denote by $\liminf A_n$ the set of all limit points of sequences $(a_n)_{n\in N}$ with $a_n\in A_n$, and denote by $\limsup A_n$ the set of all accumulation points of such sequences. The sequence $(A_n)_{n\in N}$ is Hausdorff-convergent to $A\subseteq X$ if and only if $\liminf A_n=\limsup A_n=A$ (written by $\liminf A_n=A$ or $A_n\longrightarrow A$).

Hausdorff metric: Let \mathcal{P}^n denote a topological space homeomorphic to \mathbb{R}^n . Let \mathcal{U} be the set of all non-empty closed subsets of \mathcal{P}^3 . We define on \mathcal{U} the following metric:

$$\delta: \mathcal{U} \times \mathcal{U} \longrightarrow R: (A, B) \longrightarrow \sup\{|d(x, A) - d(x, B)|e^{-d(p, x)}|x \in \mathcal{P}^3\},$$

where d is the metric on \mathcal{P}^3 and $p \in \mathcal{P}^3$. Then δ is a metric on \mathcal{U} . Let $(A_n)_{n \in \mathbb{N}}$ be a sequence in \mathcal{U} and $A \in \mathcal{U}$. Then $(A_n)_{n \in \mathbb{N}}$ converges to A in (\mathcal{U}, δ) if and only if $\lim A_n \longrightarrow A$ (see [7, Chap. 1.3]).

Let \mathcal{P}^n denote a topological space which is homeomorphic to \mathbb{R}^n . A partition $\Lambda := \{S_i | i \in \mathcal{A}\}$ in \mathcal{P}^n $(n \geq 2)$ is divisible if each S_i is closed in \mathcal{P}^n and homeomorphic to \mathcal{P}^{n-1} .

DEFINITION 1.1. Let \mathcal{L} be a system of subsets of \mathcal{P}^3 , and let $\Lambda = \{S_i | i \in \mathcal{A}\}$ be a divisible partition in \mathcal{P}^3 . The elements of \mathcal{P}^3 are called points, and the elements of \mathcal{L} are called lines. We say that $(\mathcal{P}^3, \mathcal{L}, \Lambda)$ is a topological R^2 -divisible R^3 -space if the following axioms hold:

- (1) Each line $l \in \mathcal{L}$ is closed in the topological space \mathcal{P}^3 and homeomorphic to R.
- (2) For all $(x, y) \in S_i \times S_j$ with $i \neq j$ there is a unique line $l \in \mathcal{L}$ with $x, y \in l$. For i = j there are no lines $l \in \mathcal{L}$ with $x, y \in l$.
- (3) The mapping

$$\vee: \mathcal{P}^3 \times \mathcal{P}^3 \setminus \cup_{i \in \mathcal{A}} (S_i \times S_i) \longrightarrow \mathcal{L}$$

is continuous, where \mathcal{L} has the induced topology of Hausdorff-convergence.

The joining line in (2) is denoted by $l = x \vee y$. Let H denote the Hausdorff-convergence topology on \mathcal{L} . Without (3) $(\mathcal{P}^3, \mathcal{L}, \Lambda)$ is called an R^2 -divisible R^3 -space. If $\Lambda = \{S_i | i \in \mathcal{A}\}$ is a divisible partition in \mathcal{P}^2 , then we can similarly define an R-divisible R^2 -plane $(\mathcal{P}^2, \mathcal{L}, \Lambda)$. If we think the partition as the added line set, we can regard an R-divisible R^2 -plane as an R^2 -plane.

DEFINITION 1.2. Let $(\mathcal{P}^3, \mathcal{L}, \Lambda)$ be an \mathbb{R}^2 -divisible \mathbb{R}^3 -space. A subset $E \subset \mathcal{P}^3$ is called a plane of $(\mathcal{P}^3, \mathcal{L}, \Lambda)$ if the following conditions hold:

- (1) E is closed in \mathcal{P}^3 and homeomorphic to \mathbb{R}^2 ,
- (2) $(E, \mathcal{L}_E, \Lambda_E)$ is an R-divisible R^2 -plane, where $\mathcal{L}_E := \{l \in \mathcal{L} | l \subseteq E\}$ and $\Lambda_E = \{E \cap S_i | i \in \mathcal{A}\}$ is a divisible partition in E.

An R-divisible R^2 -plane in $(\mathcal{P}^3, \mathcal{L}, \Lambda)$ is obviously an R^2 -plane. Let \mathcal{E} denote the set of all planes of $(\mathcal{P}^3, \mathcal{L}, \Lambda)$. Since the plane set \mathcal{E} is also a subset of \mathcal{U} (see Hausdorff metric), we can take on \mathcal{E} the induced topology of \mathcal{U} .

Let $(\mathcal{P}^3, \mathcal{L}, \Lambda)$ be an R^2 -divisible R^3 -space. Since lines are homeomorphic to R, there is a natural notion of intervals in lines. If $l \in \mathcal{L}$ is a line and $p, q \in l$ are two (not necessarily distinct) points on l, then we denote the *interval* which consists of all points on l between p and q by the symbol [p,q]. The *open interval* between p and q is defined as $(p,q) := [p,q] \setminus \{p,q\}$.

DEFINITION 1.3. Let (R^2, \mathcal{L}) be an R^2 -plane. A subset $P \subseteq R^2$ is called a subgeometry of (R^2, \mathcal{L}) if $x, y \in P$ with $x \lor y \in \mathcal{L}$, then $x \lor y \subseteq P$.

LEMMA 1.4. Let $E = (R^2, \mathcal{L})$ be an R^2 -plane. Let P be a subgeometry of E which contains a non-empty open set of E, then E = P.

PROOF. Let U be an open set in R^2 and $U \subseteq P$. Assume that there exists a point $q \in R^2 \setminus P$. Let $p \in U$. Since U is open in R^2 , it is clear that $|U \cap (p \vee q)| \geq 2$. Therefore, $p \vee q \subseteq P$, so that $q \in P$, a contradiction. \square

If $S_i \in \Lambda$, then $\mathcal{P}^3 \setminus S_i$ has precisely two components (denoted by S_i^+, S_i^-), of which S_i is the common (topological) boundary. If we choose more $S_j \in \Lambda$ with $i \neq j$, then one of the components of $\mathcal{P}^3 \setminus S_i$ (for example S_i^+) is also separated by S_j . We can choose one of the components of $S_i^+ \setminus S_j$ which contains S_i and S_j as the topological boundaries. Let $\overline{S_{ij}^{+-}}$ denote the union of the components which has S_i and S_j as topological boundaries, S_i and S_j . We identify $\overline{S_{ii}^{+-}}$ with simply S_i

DEFINITIONS 1.5. (1) The final topology F on \mathcal{L} is the largest topology on \mathcal{L} for which the mapping $\vee : \mathcal{P}^3 \times \mathcal{P}^3 \setminus \cup_{i \in \mathcal{A}} (S_i \times S_i) \longrightarrow \mathcal{L}$ is continuous.

- (2) The open join topology OJ is generated by the subbasic elements $O_1 \vee O_2 = \{p \vee q \in \mathcal{L} | p \in O_1, q \in O_2\}$, where O_1, O_2 are disjoint open sets in \mathcal{P}^3 .
- (3) The open meet topology OM is defined by the subbasic sets $M_O = \{l \in \mathcal{L} | l \cap O \neq \emptyset\}$, where O is an open set in \mathcal{P}^3 .
- (4) The open partition meet topology OPM on \mathcal{L} is generated by the subbasis elements $S_i^O = \{l \in \mathcal{L} | l \cap O \neq \emptyset\}$, where O is an open set in S_i and $S_i \in \Lambda$.
- (5) The compact open topology COT on \mathcal{L} is defined by the subbasis elements $S_{ij}^O = \{l \in \mathcal{L} | l \cap S_i = \{x\}, l \cap S_j = \{y\}, [x,y] \subseteq \overline{S_{ij}^{+-}} \cap O\}$, where S_i , $S_j \in \Lambda$, $\overline{S_{ij}^{+-}}$ is the union of the component which has S_i and S_j as topological boundaries, S_i and S_j , and S_j is open in \mathcal{P}^3 .

LEMMA 1.6. Let $(\mathcal{P}^3, \mathcal{L}, \Lambda)$ be a topological R^2 -divisible R^3 -space. Then:

- (1) The topologies H, F, OJ, OM for \mathcal{L} coincide.
- (2) The join map $\vee : \mathcal{P}^3 \times \mathcal{P}^3 \setminus \cup_{i \in \mathcal{A}} (S_i \times S_i) \longrightarrow \mathcal{L}$ is open.
- (3) $H \subseteq OPM \subseteq COT$.

DEFINITION 1.7. Let $(\mathcal{P}^3, \mathcal{L}, \Lambda)$ be an \mathbb{R}^2 -divisible \mathbb{R}^3 -space. Given two subsets $A, B \subseteq \mathcal{P}^3$, we define

$$[A,B] := \bigcup_{a \in A, b \in B} [a,b],$$

i.e., [A, B] is the set of all points between A and B.

Let $(\mathcal{P}^3, \mathcal{L}, \Lambda)$ be an \mathbb{R}^2 -divisible \mathbb{R}^3 -space. Then we will consider the following additional axiom:

(B) (Bounded-axiom) If $A, B \subseteq \mathcal{P}^3$ are compact, then $\overline{[A,B]}$ is also compact.

THEOREM 1.8. Let $(\mathcal{P}^3, \mathcal{L}, \Lambda)$ be a topological \mathbb{R}^2 -divisible \mathbb{R}^3 -space. Then:

- (1) (Order-condition) If the points sequences $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$, $(c_n)_{n\in\mathbb{N}}$ have limits a,b,c. If $b_n\in[a_n,c_n]$ for all $n\in\mathbb{N}$, then it is also that $b\in[a,c]$.
- (2) If $(\mathcal{P}^3, \mathcal{L}, \Lambda)$ satisfies the axiom (B), then H = COT.
- (3) Let H = COT. If $A, B \subseteq \mathcal{P}^3$ are compact with $A \times S \subseteq \mathcal{P}^3 \times \mathcal{P}^3 \setminus \bigcup_{i \in \mathcal{A}} (S_i \times S_i)$, then $\overline{[A, B]}$ is also compact.

PROOF. (1) [9, 2.5].

- (2) Assume that $(\mathcal{P}^3, \mathcal{L}, \Lambda)$ satisfies the axiom (B). Then we first show that $OPM \subseteq OJ = H$. Let $l \in S_i^U \in OPM$, $\{p\} = l \cap U$ and V be an open set in \mathcal{P}^3 such that $S_i \cap V = U$. Let $(V_n)_{n \in \mathbb{N}}$ be decreasing sequence of neighborhoods of p such that $\{V_n|n\in N\}$ is a neighborhood basis at p. Let S_i^+ and S_i^- be the two connected components of $\mathcal{P}^3 \setminus S_i$, and let $V_n \cap (\mathcal{P}^3 \setminus S_i) = V_n^+ \cup V_n^-$ such that $V_n^+ \subseteq S_i^+$ and $V_n^- \subseteq S_i^-$. We will show that there exists a number $n \in N$ such that $l \in V_n^+ \vee V_n^- \subseteq S_i^U$. Suppose that it is not true; for each $n \in N$ we can choose $p_n \in V_n^+, q_n \in V_n^-$ such that $(p_n \vee q_n) \cap U = \emptyset$. Since (p_n) and (q_n) converge to p, and by the axiom (B) and order-condition, $(p_n \vee q_n) \cap S_i$ converges to p. Hence for sufficiently large $n \in N$ $(p_n \vee q_n) \cap S_i \subseteq V \cap S_i = U$, a contradiction. We show that $COT \subseteq OPM$. Let $l \in S_{ij}^O \in COT$, and let $\{x\} = S_i \cap l, \{y\} = S_j \cap l$. If i = j, then it is clear that $S_{ij}^O \in OPM$. Hence let $i \neq j$. Let $(V_n(x))_{n \in \mathbb{N}}$ and $(W_n(y))_{n \in \mathbb{N}}$ be two decreasing sequences of neighborhoods of x and y such that $(V_n(x))_{n\in\mathbb{N}}$ and $(W_n(y))_{n\in\mathbb{N}}$ are neighborhood basis at x and y in S_i and S_j , respectively. Then we will show that there exists a number $n \in N$ such that $l \in S_i^{V_n(x)} \cap S_i^{W_n(x)} \subseteq$ S_{ij}^{O} . If we assume that it is not true; for each $n \in N$ there exist $x_n \in$ $V_n(x)$ and $y_n \in W_n(y)$ such that $[x_n, y_n] \not\subseteq S_{ij}^O$. For each $n \in N$ choose a point $p_n \in [x_n, y_n]$ such that $p_n \notin S_{ij}^O$. Then by the axiom (B) and order-condition, the sequence (p_n) has an accomulation point on [x, y], a contradiction.
- (3) Let H = COT. Assume that $\overline{[A,B]}$ is not compact. Then there exists a sequence $((a_n,b_n))$ in $A \times B$ and a sequence $(p_n), p_n \in [a_n,b_n] \setminus \{a_n,b_n\}$ such that (p_n) is unbounded. Since $A \times B$ is compact, there exists a convergent subsequence $((a_{n_k},b_{n_k}))$ which converges to a point $(a,b) \in A \times B$. Let $a \neq b$. Let $a_1,b_1 \in a \vee b$ such that $a \in (a_1,b)$ and

 $b \in (a, b_1)$. Choose a relative compact open set U which contains $[a_1, b_1]$. Since H = COT and $a_{n_k} \lor b_{n_k} \longrightarrow a \lor b$, there exists N such that for all $k \ge N \cup ([a_{n_k}, b_{n_k}]) \cup [a, b] \subseteq U$. Consequently, $\cup ([a_{n_k}, b_{n_k}]) \cup [a, b]$ is bounded, a contradiction.

DEFINITION 1.9. An isomorphism between R^2 -divisible R^3 -spaces $(\mathcal{P}_1^3, \mathcal{L}_1, \Lambda_1)$ and $(\mathcal{P}_2^3, \mathcal{L}_2, \Lambda_2)$ is a bijection $\gamma : \mathcal{P}_1^3 \longrightarrow \mathcal{P}_2^3$ such that $l^{\gamma} \in \mathcal{L}_2$ and $S_i^{\gamma} \in \Lambda_2$ for each $l \in \mathcal{L}_1$ and $S_i \in \Lambda_1$. A collineation γ of an R^2 -divisible R^3 -space $(\mathcal{P}^3, \mathcal{L}, \Lambda)$ is a bijection of \mathcal{P}^3 such that $l^{\gamma} \in \mathcal{L}$ and $S_i^{\gamma} \in \Lambda$ for each $l \in \mathcal{L}$ and $S_i \in \Lambda$.

LEMMA 1.10. (Reduction) Let $(R^3, \mathcal{L}, \Lambda)$ be an R^2 -divisible R^3 -space. Assume that the group $(R^3, +)$ is admissible as a transitive collineation group. If there exists a point $a \in R^3$ with $a \in S_i$ such that the restriction $\vee |\{a\} \times R^3 \setminus \{a\} \times S_i$ is continuous, then \vee is continuous.

PROOF. Let $(a,b) \in S_i \times S_j, i \neq j$ and $a_n \longrightarrow a, b_n \longrightarrow b$. Then we have to show that $a \vee b \subseteq \liminf a_n \vee b_n \subseteq \limsup a_n \vee b_n \subseteq a \vee b$. Let $x \in a \vee b$. Then $a_n - (a_n - a) = a$ and $b_n - (a_n - a) \longrightarrow b$. Since $\vee |\{a\} \times R^3 \setminus \{a\} \times S_i$ is continuous, there exists a sequence $(y_n)_{n \in \mathbb{N}}, y_n \in a \vee (b_n - (a_n - a))$ such that $y_n \longrightarrow x$. Therefore, $x_n = y_n + (a_n - a) \in (a + a_n - a) \vee (b_n - (a_n - a) + (a_n - a)) = a_n \vee b_n$, and so $x_n \longrightarrow x$. Let $x \in \limsup a_n \vee b_n$. Assume that $x \notin a \vee b$. There exists a subsequence $(x_{n_k}), x_{n_k} \in a_{n_k} \vee b_{n_k}$ such that $x_{n_k} \longrightarrow x$. Then, $x_{n_k} - (a_{n_k} - a) \in (a_{n_k} - (a_{n_k} - a)) \vee (b_{n_k} - (a_{n_k} - a)) = a \vee (b_{n_k} - (a_{n_k} - a))$, and we have $x_{n_k} - (a_{n_k} - a) \longrightarrow x$. Since $b_{n_k} - (a_{n_k} - a) \longrightarrow b$ and $\vee |\{a\} \times R^3 \setminus \{a\} \times S_i$ is continuous, $x \in a \vee b$, a contradiction.

DEFINITION 1.11. Let \mathcal{B} be a system of subsets of \mathcal{P}^3 . The element of \mathcal{B} are called surfaces. The incidence structure $(\mathcal{P}^3, \mathcal{B})$ is called a (3,2,2)-geometry if the following axioms hold:

- (1) Each surface $B \in \mathcal{B}$ is closed in the topological space \mathcal{P}^3 and homeomorphic to \mathbb{R}^2 .
- (2) Each pair p, q of distinct points is contained in a unique surface B. Let $p \vee_B q$ denote the surface which contains two points p, q.

DEFINITION 1.12. A (3,2,2)-geometry $(\mathcal{P}^3,\mathcal{B})$ is topological if the join map $\vee_B: \mathcal{P}^3 \times \mathcal{P}^3 \setminus \triangle \longrightarrow \mathcal{B}$ is continuous, where $\triangle = \{(p,p)|p \in \mathcal{P}^3\}$ denotes the diagonal and \mathcal{B} carries the topology of Hausdorff-convergence. The notation of (3,2,2)-geometries first appeared in [1].

Planar functions and shift planes

DEFINITION 1.13. Let G, H be two (additively written) abelian groups. A function $f: G \longrightarrow H$ is called *planar* if it has the following property: For all $d \in G \setminus \{0\}$ the mapping $f_d: G \longrightarrow H: x \longrightarrow f(x+d) - f(x)$ is bijective.

Let $l(c) = \{(c,y)|y \in H\}$ for $c \in G$ and $l(a,b) = \{(x,f(x-a)+b)|x \in G\}$ for $(a,b) \in G \times H$. Then I(G,H;f) is the incidence structure with point set $\mathcal{P} = G \times H$ and line set $\mathcal{L} = \{l(c)|c \in G\} \cup \{l(a,b)|(a,b) \in G \times H\}$. This incidence structure turns out to be a special kind of affine plane, usually referred to as the shift plane generated by f. It is well known that if $f: R \longrightarrow R$ $(F: R^2 \longrightarrow R^2)$ is a continuous planar function, then I(R,R;f) $(I(R^2,R^2;F))$ is a 2-dimensional (4-dimensional) affine plane.

Examples of planar functions $R^2 \longrightarrow R^2$ and the induced R^2 -divisible R^3 -spaces.

(1) The differentiable planar function $C \longrightarrow C: z \longrightarrow z^2$ interpreted as a map from R^2 to R^2 is

$$R^2 \longrightarrow R^2 : (x, y) \longrightarrow (x^2 - y^2, 2xy).$$

If we set x = 0 (y = 0), then we get an R^2 -divisible R^3 -space which is interpreted as the product space of the usual shift plane and the real affine plane.

(2) Given planar functions f and g on R which are both convex. Polster [11] constructs a planar function f*g on R^2 , called the product of f and g, as follows:

$$(f * g) : R^2 \longrightarrow R^2; (x, y) \longrightarrow (f(x) - g(y), xy).$$

In this case, if we set x = 0 (y = 0), then we get an R^2 -divisible R^3 -space which is interpreted as the product space of a 2-dimensional shift plane and the real affine plane

(3) Two further differentiable planar functions in [8] are

$$R^2 \longrightarrow R^2: (x,y) \longrightarrow (xy - \frac{1}{3}x^3, \frac{1}{2}y^2 - \frac{1}{12}x^4)$$

and

$$R^2 \longrightarrow R^2 : (x,y) \longrightarrow (xy - \frac{1}{3}x^3 - x, \frac{1}{2}(y^2 - x^2) - \frac{1}{12}x^4).$$

In two cases, if we set x = 0 (y = 0), then we get an R^2 -divisible R^3 -space which is interpreted as an R^2 -divisible R^3 -space induced by a planar function (see section 3).

The 4-dimensional shift planes have played a significant role in the classification of all flexible 4-dimensional compact projective planes.

2. Product spaces of two standard R^2 -planes

An R^2 -plan (R^2, \mathcal{L}) is called *standard* if all vertical lines $\{x\} \times R$ are in \mathcal{L} and the other lines $l \in \mathcal{L}$ can be written as the graph(f) of a continuous mapping $f: R \longrightarrow R$. Let $E_1 = (R^2, \mathcal{L})$ and $E_2 = (R^2, \Im)$ be two standard R^2 -planes. We identify E_1 with the horizontal plane z = 0 and E_2 with the vertical plane y = 0 in $R^3 = \{(x, y, z) | x, y, z \in R\}$, respectively. We define on R^3 the following curves as lines: $f \times g := \{(x, f(x), g(x)) | x \in R\}$, where f and g are non-vertical lines of E_1 and E_2 , respectively. Then we can construct on R^3 a topological R^2 -divisible R^3 -space.

DEFINITION 2.1. Let $E_1=(R^2,\mathcal{L})$ and $E_2=(R^2,\Im)$ be standard R^2 -planes. Let $\mathcal{L}\times\Im=\{f\times g|f\in\mathcal{L},g\in\Im\}$ and let $\Lambda=\{\{x\}\times R^2|x\in R\}$. The incidence structure $(R^3,\mathcal{L}\times\Im,\Lambda)$ is called the product space of two standard R^2 -planes E_1 and E_2 and written by $(R^3,\mathcal{L}\times\Im,\Lambda)_{E_1\times E_2}$. In a product space $(R^3,\mathcal{L}\times\Im,\Lambda)_{E_1\times E_2}$ there exist always the planes on the lines of E_1 and the planes on the lines of E_2 . A plane on a line of E_1 is called a *vertical plane*, and a plane on a line of E_2 is called a *horizontal plane*. We note that a vertical plane is the set $\{(x,f(x),z)|x,z\in R\}$ with $f\in\mathcal{L}$ and a horizontal plane is the set $\{(x,y,g(x))|x,y\in R\}$ with $g\in\Im$.

THEOREM 2.2. Let $(R^3, \mathcal{L} \times \Im, \Lambda)_{E_1 \times E_2}$ be the product space of two standard R^2 -planes E_1 and E_2 . Then $(R^3, \mathcal{L} \times \Im, \Lambda)_{E_1 \times E_2}$ is a topological R^2 -divisible R^3 -space.

PROOF. It is clear that each line $f \times g \in \mathcal{L} \times \Im$ is homeomorphic to R and closed in R^3 . We first show that $(R^3, \mathcal{L} \times \Im, \Lambda)_{E_1 \times E_2}$ is an R^2 -divisible R^3 -space. Let $x = (x_1, y_1, z_1)$ and $y = (x_2, y_2, z_2)$ with $x_1 \neq x_2$. Since for the pair of points (x_1, y_1) and (x_2, y_2) in E_1 , there exists a unique line f in \mathcal{L} , and since for the pair of points (x_1, z_1) and (x_2, z_2) in E_2 , there exists a unique line g in \Im , hence $f \times g$ is the unique join line of two points (x_1, y_1, z_1) and (x_2, y_2, z_2) . We next show that $(R^3, \mathcal{L} \times \Im, \Lambda)_{E_1 \times E_2}$ is topological. Let $(a_n)_{n \in \mathbb{N}}$ and $(b_n)_{n \in \mathbb{N}}$ be two sequences with limits $a = (x_1, y_1, z_1)$ and $b = (x_2, y_2, z_2)$, $x_1 \neq x_2$, respectively. Then we have to show that $a \vee b \subseteq \liminf a_n \vee b_n \subseteq \limsup a_n \vee b_n \subseteq a \vee b$. Let $c \in a \vee b = f \times g = \{(x, f(x), g(x)) | x \in R\}$, i.e., $c = (x_0, f(x_0), g(x_0))$. Let $a_n \vee b_n = f_n \times g_n = \{(x, f_n(x), g_n(x)) | x \in R\}$. Since E_1 is topological,

the sequence $((x_0, f_n(x_0))_{n\in N}$ converges to $(x_0, f(x_0))$, and since E_2 is also topological, the sequence $((x_0, g_n(x_0))_{n\in N}$ converges to $(x_0, g(x_0))$. It implies that $c \in \liminf a_n \vee b_n$. Let $c = (x_0, y_0, z_0) \in \limsup a_n \vee b_n$. Since E_1 and E_2 are topological, it follows that $(x_0, y_0) \in f$ and $(x_0, z_0) \in g$, therefore $c \in f \times g$.

We note that the topologies H, OPM and COT on $\mathcal{L} \times \Im$ coincide, because of existence of vertical and horizontal planes, a product space satisfies the bounded axiom. Let \mathcal{V} be the space of all vertical planes and let \mathcal{H} be the space of all horizontal planes. Furthermore, let $\overline{\mathcal{V}} = \mathcal{V} \cup \Lambda$ and $\overline{\mathcal{H}} = \mathcal{H} \cup \Lambda$. We define an incidence relation $(R^3, \overline{\mathcal{V}})$ (resp. $(R^3, \overline{\mathcal{B}})$). Let $p = (x_1, y_1, z_1)$ and $q = (x_2, y_2, z_2)$ be two distinct points. If $x_1 = x_2$, then we set $p \vee_B q = \{x_1\} \times R^2$. If $x_1 \neq x_2$, then there exists a unique line $p \vee q = f \times g$, hence we can determine a unique vertical plane V (resp. a unique horizontal plane H) such that $p, q \in f \times g \subseteq V$ (resp. $\subseteq H$). Therefore, we set $p \vee_B q = V$ (resp. = H).

Lemma 2.3. The defined (3,2,2)-geometry $(R^3,\overline{\mathcal{V}})$ $((R^3,\overline{\mathcal{H}}))$ is topological.

PROOF. Since R^2 -planes are topological, it is easy to check that the defined (3,2,2)-geometries are topological.

Let Λ be a divisible partition in \mathcal{P}^3 and let \mathcal{A} and \mathcal{B} be two systems of subsets in \mathcal{P}^3 . Furthermore, let $\overline{\mathcal{A}} = \mathcal{A} \cup \Lambda$ and $\overline{\mathcal{B}} = \mathcal{B} \cup \Lambda$. Let $(\mathcal{P}^3, \overline{\mathcal{A}})$ and $(\mathcal{P}^3, \overline{\mathcal{B}})$ be two (3,2,2)-geometries such that if for each $(A,B) \in \mathcal{A} \times \mathcal{B}$ with $A \cap B \neq \emptyset$, then $A \cap B$ is closed in \mathcal{P}^3 and homeomorphic to R. It can be easily shown that $(\mathcal{P}^3, \mathcal{A}\mathcal{B}, \Lambda)$ is an R^2 -divisible R^3 -space, where $\mathcal{A}\mathcal{B} = \{A \cap B | (A,B) \in \mathcal{A} \times \mathcal{B}, A \cap B \neq \emptyset\}$. If the mapping $\varphi : \mathcal{A} \times \mathcal{B} \longrightarrow \mathcal{A}\mathcal{B} : (A,B) \longrightarrow A \cap B$ is continuous, then $(\mathcal{P}^3, \mathcal{A}\mathcal{B}, \Lambda)$ is also topological.

LEMMA 2.4. Let $(R^3, \mathcal{L} \times \Im, \Lambda)_{E_1 \times E_2}$ be the product space of two standard R^2 -planes E_1 and E_2 . Then:

- (1) The mapping $\alpha : \overline{\mathcal{V}} \longrightarrow \mathcal{L} : \{(x, f(x), z) | x, z \in R\} \longrightarrow \{(x, f(x)) | x \in R\}$ and $\{x\} \times R^2 \longrightarrow \{x\} \times R$ is a homeomorphism, where $f \in \mathcal{L}$.
- (2) For all $f \times g \in \mathcal{L} \times \Im$ let $\gamma(f \times g) = \{(x, f(x), z) | x, z \in R\} \in \mathcal{V}$. Then the mapping $\gamma : \mathcal{L} \times \Im \longrightarrow \mathcal{V}$ is continuous.
- (3) The mapping $\beta : \overline{\mathcal{H}} \longrightarrow \Im : \{(x, y, g(x)) | x, y \in R\} \longrightarrow \{(x, g(x)) | x \in R\}$ and $\{x\} \times R^2 \longrightarrow \{x\} \times R$ is a homeomorphism, where $g \in \Im$.
- (4) For all $f \times g \in \mathcal{L} \times \Im$ let $\delta(f \times g) = \{(x, y, g(x)) | x, y \in R\} \in \mathcal{H}$. Then the mapping $\gamma : \mathcal{L} \times \Im \longrightarrow \mathcal{H}$ is continuous.

- (5) The mapping $\Phi: \mathcal{V} \times \mathcal{H} \longrightarrow \mathcal{L} \times \Im: (V, H) \longrightarrow V \wedge H$ is a homeomorphism.
- (6) The space $\mathcal{L} \times \Im$ is homeomorphic to \mathbb{R}^4 .

PROOF. (1) By definition of Hausdorff-convergence, it is easy to check that α is a homeomorphism.

(2) Let $l_n, l \in \mathcal{L} \times \Im$ such that $l_n \longrightarrow l$. Let $a, b \in l$ with $a \neq b$. Then there exist $a_n, b_n \in l_n$ such that $a_n \neq b_n, a_n \longrightarrow a$ and $b_n \longrightarrow b$. Since the projection $P: R^3 \longrightarrow R^2: (x, y, z) \longrightarrow (x, y)$ is continuous, it follows that $P(a_n) \longrightarrow P(a), P(b_n) \longrightarrow P(b)$ and $P(a) \neq P(b)$. Since $(P(R^3), P(\mathcal{L} \times \Im)) = (R^2, \mathcal{L})$, where $P(\mathcal{L} \times \Im) = \{P(l) | l \in \mathcal{L} \times \Im\}$, it implies that $P(a_n) \vee P(b_n) \longrightarrow P(a) \vee P(b)$. Since $P(a_n) \vee P(b_n) = \alpha(\gamma(l_n))$ and $P(a) \vee P(b) = \alpha(\gamma(l))$, it follows that $\alpha\gamma$ is continuous. By (1), γ is also continuous.

Proof of (3), (4) is similar to the proof of (1), (2).

(5) By definition of Hausdorff-convergence, the following mappings are continuous: $\Phi: \mathcal{V} \times \mathcal{H} \longrightarrow \mathcal{L} \times \Im: (V, H) \longrightarrow V \wedge H, \Psi: \mathcal{L} \times \Im \longrightarrow \mathcal{V} \times \mathcal{H}: f \times g \longrightarrow (f \subseteq V, g \subseteq H)$. It is clear that $\Psi \circ \Phi = id$ and $\Phi \circ \Psi = id$, i.e., Φ is a homeomorphism.

A pair of points (x_1, y_1, z_1) and (x_2, y_2, z_2) is called vertical if $x_1 = x_2, y_1 = y_2$. A pair of points (x_1, y_1, z_1) and (x_2, y_2, z_2) is called horizontal if $x_1 = x_2, z_1 = z_2$.

LEMMA 2.5. Let $E \subseteq \mathbb{R}^3$ be a plane of $(\mathbb{R}^3, \mathcal{L} \times \Im, \Lambda)_{E_1 \times E_2}$. Then:

- (1) If E contains two vertical points, i.e., $(x, y, z_1), (x, y, z_2) \in E$ with $z_1 \neq z_2$, then E is a vertical plane.
- (2) If E contains two horizontal points, i.e., $(x, y_1, z), (x, y_2, z) \in E$ with $y_1 \neq y_2$, then E is a horizontal plane.

PROOF. (1) Let p,q be two vertical points with $p,q \in E$. By [9, lemma 2.2], the joining line $l := p \lor q = \{x\} \times \{y\} \times R$ is contained in E. Let $a \in E \setminus \{x\} \times R^2$, and let V be a vertical plane with $a \in V$ and $l \subseteq V$. Then $a \lor p$ and $a \lor q$ lie on E. Consequently, E = V is a vertical plane.

(2) The assertion can be proved as (1).

THEOREM 2.6. Let $E_1 = (R^2, \mathcal{L})$ and $E_2 = (R^2, \Im)$ be two standard R^2 -planes, and let $(R^3, \mathcal{L} \times \Im, \Lambda)_{E_1 \times E_2}$ be the product space of E_1 and E_2 . If there exists a plane which is neither vertical nor horizontal, then $E_1 = (R^2, \mathcal{L})$ is isomorphic to $E_2 = (R^2, \Im)$.

PROOF. Suppose that E is a plane which is neither vertical nor horizontal. The projection $P_1: E \longrightarrow R^2: (x,y,z) \longrightarrow (x,y)$ is continuous, and since E contains no two vertical points, P_1 is injective. By theorem on the invariance of domain (see for example [10, III. 6]), $P_1(E) \subseteq R^2$ is open and $P_1: E \longrightarrow P(E)$ is a homeomorphism. Let $x,y \in P_1(E)$ with $x \neq y$. Let $a,b \in E$ with $x = P_1(a)$ and $y = P_1(b)$, then $a \lor b \subseteq E$. Since $x \lor y = P_1(a \lor b) \subseteq P_1(E)$ and $x \lor y = P_1(a \lor b) \in \mathcal{L}$, hence $P_1(E)$ is a subgeometry of $E_1 = (R^2, \mathcal{L})$ which is open. By lemma 1.4, $P_1(E) = R^2$, and for each line $f \times g \subseteq E$, $P_1(f \times g) = f \in \mathcal{L}$. It is clear that for each $S_i \in \Lambda$ $P_1(E \cap S_i)$ is a vertical line. Hence $P_1: E \longrightarrow (R^2, \mathcal{L})$ is an isomorphism. Similarly, we consider the projection $P_2: E \longrightarrow R^2: (x,y,z) \longrightarrow (x,z)$. Then $P_2: E \longrightarrow (R^2, \Im)$ is also an isomorphism. Therefore, (R^2, \mathcal{L}) is isomorphic to (R^2, \Im) .

Let $(R^3, \mathcal{L} \times \Im, \Lambda)_{E_1 \times E_2}$ be the product space of E_1 and E_2 . Let Σ_i be the collineation group of E_i , i=1,2, which fixes each line x-const. (hence $\delta_i: R^2 \longrightarrow R^2: (x,y) \longrightarrow (x,h_i(x,y))$. If $\delta_i \in \Sigma_i, i=1,2$, then $\delta:=\delta_1 \times \delta_2: R^3 \longrightarrow R^3: (x,y,z) \longrightarrow (x,h_1(x,y),h_2(x,z))$ is a collineation of $(R^3,\mathcal{L} \times \Im, \Lambda)_{E_1 \times E_2}$. Let $\Sigma_1 \times \Sigma_2$ denote the set of all collineations $\delta=\delta_1 \times \delta_2$ with $\delta_1 \in \Sigma_1$ and $\delta_2 \in \Sigma_2$. Let S be the common induced action on the x-coordinate. Then $<\Sigma_1 \times \Sigma_2, S>$ is a collineation group of $(R^3,\mathcal{L} \times \Im, \Lambda)_{E_1 \times E_2}$.

THEOREM 2.7. Let $E_1 = (R^2, \mathcal{L})$ and $E_2 = (R^2, \Im)$ be two standard R^2 -planes which are not isomorphic, and let $(R^3, \mathcal{L} \times \Im, \Lambda)_{E_1 \times E_2}$ be the product space of E_1 and E_2 . Let Σ be the collineation group of $(R^3, \mathcal{L} \times \Im, \Lambda)_{E_1 \times E_2}$. Then Σ is the group $< \Sigma_1 \times \Sigma_2, S >$.

PROOF. Let $\gamma \in \Sigma$ and let $R^2_{\langle x,y \rangle}$ (resp. $R^2_{\langle x,z \rangle}$) be the $\langle x,y \rangle$ -coordinate plane (resp. $\langle x,z \rangle$ -coordinate plane). Since γ maps the sets $\{x\} \times R^2$ onto itself, hence γ is the form $\gamma(x,y,z) = (f(x),g(x,y,z),h(x,y,z))$. By Theorem 2.5, there exist no further planes, hence γ is an isomorphism in the vertical planes (resp. in the horizontal planes). Therefore, γ must be the form $\gamma(x,y,z) = (f(x),g(x,y),h(x,z))$. It follows that $\gamma|R^2_{\langle x,y \rangle}$ (resp. $\gamma|R^2_{\langle x,z \rangle}$) is a collineation of E_1 (resp. E_2), which maps vertical lines onto itself, hence $\gamma \in \langle \Sigma_1 \times \Sigma_2, S \rangle$.

THEOREM 2.8. Let $E_1 = (R^2, \mathcal{L}_1)$ and $E_2 = (R^2, \mathcal{L}_2)$ be two standard R^2 -planes isomorphic to the real affine plane (R^2, \mathcal{L}) , respectively. Let $\tau_t : (x,y) \longrightarrow (x+t,y), t \in R$ be collineations of E_1 (resp. E_2). Then $(R^3, \mathcal{L}_1 \times \mathcal{L}_2, \Lambda)_{E_1 \times E_2}$ is isomorphic to the real affine R^2 -divisible R^3 -space.

PROOF. Let $\alpha: (R^2, \mathcal{L}) \longrightarrow (R^2, \mathcal{L}_1)$ be an isomorphism. Let β be a collineation of (R^2, \mathcal{L}) . Then the composition $\gamma := \alpha \beta$ is an isomorphism from (R^2, \mathcal{L}) to (R^2, \mathcal{L}_1) . Since all vertical lines are in \mathcal{L} (resp. in \mathcal{L}_1) and the full collineation group of (R^2, \mathcal{L}) is transitive on R^2 (resp. \mathcal{L}), we can choose β such that $\gamma := \alpha \beta$ maps vertical lines onto itself. Hence γ is the form $\gamma(x,y)=(f(x),g(x,y))$, and we may assume that f(0)=0. By assumption, $\tau_t, t \in R$ are collineations of (R^2, \mathcal{L}_1) . For all $t \in R$ $\tau_t' = \gamma^{-1} \tau_t \gamma$ are collineations of (R^2, \mathcal{L}) . Since τ_t' maps vertical lines onto itself and $\{\tau_t'\}$ is transitive on the vertical lines, Hence τ_t' has the form $\tau'_t(x,y) = (x+h(t),*)$, where h is continuous and for all $s,t \in R$ h(s+t) =h(s) + h(t). Since a continuous additive function is linear, it follows that h is linear. Since $\gamma \tau'_t = \tau_t \gamma$, we have f(x + h(t)) = f(x) + t. From f(0) = 0, putting x = 0, we get f(h(t)) = t. Hence f is linear and we may assume that $\gamma(x,y)=(x,g(x,y))$. Let $\gamma_1(x,y)=(x,g_1(x,y))$ (resp. $\gamma_2(x,z) = (x,g_2(x,z))$ be an isomorphism from (R^2,\mathcal{L}) to (R^2,\mathcal{L}_1) (resp. (R^2, \mathcal{L}_2)). We define

$$\gamma_1 * \gamma_2 : (x, y, z) \longrightarrow (x, g_1(x, y), g_2(x, z)).$$

Hence $\gamma_1 * \gamma_2$ is an isomorphism between the real affine R^2 -divisible R^3 -space and $(R^3, \mathcal{L}_1 \times \mathcal{L}_2, \Lambda)_{E_1 \times E_2}$.

2.1. (α, d) -space

Let $E_1 = (R^2, \mathcal{L})$ be the real affine plane. Let $E_2 = (R^2, \Im)$ with $\Im = \{\{(x, g(x+n) + \eta) | x \in R\} | n, \eta \in R\} \cup \{\{c\} \times R | c \in R\}, \text{ where }$

$$g(x) = \left\{ \begin{array}{ccc} |x|^d & : & x \ge 0 \\ \alpha |x|^d & : & x \le 0 \end{array} \right. \text{ with } 0 < \alpha \le 1 < d$$

is a planar function.

The product space of E_1 and E_2 is called an (α, d) -space. We note that if $(\alpha, d) = (1, 2)$, then by Theorem 2.8, the space is isomorphic to the real affine R^2 -divisible R^3 -space. An (α, d) -space is induced from a 4-dimensional shift plane.

LEMMA 2.9. Let $(\alpha, d) \neq (1, 2)$. Then the full collineation group Σ of $E_2 = (R^2, \Im)$ has dimension 3 and is the group

$$\{(x,y) \longrightarrow (ax+\xi,a^dy+\eta): a>0,\, \xi,\, \eta \in R\}.$$

Furthermore $\Sigma = \Sigma^1$ for $\alpha \neq 1$, and $\Sigma = \Sigma^1 < (x, y) \longrightarrow (-x, y) >$ for $\alpha = 1$.

THEOREM 2.10. Let $(R^3, \mathcal{L} \times \Im, \Lambda)_{E_1 \times E_2}$ be an (α, d) -space with $(\alpha, d) \neq (1, 2)$. Then full collineation group Σ of $(R^3, \mathcal{L} \times \Im, \Lambda)_{E_1 \times E_2}$ has dimension 6 and is the group

$$\left\{ \left(\begin{array}{c} x \\ y \\ z \end{array} \right) \longrightarrow \left(\begin{array}{c} a \\ b & c \\ & a^d \end{array} \right) \left(\begin{array}{c} x \\ y \\ z \end{array} \right) + \left(\begin{array}{c} t_1 \\ t_2 \\ t_3 \end{array} \right) \right\},$$

 $a > 0, c \neq 0, b, t_i \in R, i = 1, 2, 3.$

If $\alpha = 1$, then the reflection to the vertical plane $R \times \{0\} \times R$ is a collineation.

PROOF. Let Σ_i be the collineation groups of E_i , i=1,2, which fixes each line x=const., and let S be the common induced action on x-coordinate. Hence $\Sigma_1=\{(x,y)\longrightarrow (x,bx+cy+\xi)|c\neq 0,b,\xi\in R\}$, $\Sigma_2=\{(x,z)\longrightarrow (x,z+\eta)|\eta\in R\}$, and S is the group $S=\{x\longrightarrow ax+t|a>0,t\in R\}$. By Theorem 2.7, the proof is complete. \square

3. R^2 -divisible R^3 -spaces induced by planar functions

From now on we consider always the divisible partition $\Lambda = \{\{x\} \times R^2 | x \in R\}$. In sections 3,4 we will introduce a method, construction of topological R^2 -divisible R^3 -spaces. The affine plane in Lemma 3.1 is a generalized type of the real affine plane.

LEMMA 3.1. Let $g: R \longrightarrow R$ be a continuous function and $\alpha: R \longrightarrow R$ a continuous bijective function. We define an incidence structure $(R^2, \mathcal{L}_{q,\alpha}^A)$ with the following lines:

- (1) All vertical lines $\{x\} \times R$ with $x \in R$ are in $\mathcal{L}_{g,\alpha}^A$.
- (2) The sets $l(t,\eta) = \{(x,g(x) + t\alpha(x) + \eta) | x \in \tilde{R}\}$ with $t,\eta \in R$ are in $\mathcal{L}_{q,\alpha}^A$.

Then $(R^2, \mathcal{L}_{q,\alpha}^A)$ is an affine plane.

PROOF. We first show that each pair p,q of distinct points is contained in a unique line $p \vee q \in \mathcal{L}_{g,\alpha}^A$. Since all verticals are in $\mathcal{L}_{g,\alpha}^A$, we will show that for each $(x_1,y_1),(x_2,y_2)\in R^2$ with $x_1\neq x_2$ there exists a unique join line $l\in\mathcal{L}_{g,\alpha}^A$ such that $l=(x_1,y_1)\vee(x_2,y_2)$. Hence we have the following equations:

$$g(x_1) + t\alpha(x_1) + \eta = y_1,$$

$$q(x_2) + t\alpha(x_2) + \eta = y_2.$$

Therefore, $t(\alpha(x_1) - \alpha(x_2)) = y_1 - y_2 - g(x_1) + g(x_2)$. Since $\alpha(x)$ is bijective, it follows that $\alpha(x_1) - \alpha(x_2) \neq 0$. Hence there exists a unique $t \in R$ which satisfies the given equations. Thereby the corresponding $\eta \in R$ is uniquely determined. We next show that $(R^2, \mathcal{L}_{g,\alpha}^A)$ holds the parallel axiom, i.e., for each line l and each point p = (u, v), there is a unique line which passes through p and is parallel to l.

Case 1: Let the given line l be vertical. Then there exists obviously a unique line h with $l \cap h = \emptyset, p \in h$.

Case 2: Let the given line l be not vertical. Hence there exist $t_0, \eta_0 \in R$ with $l = \{(x, g(x) + t_0\alpha(x) + \eta_0) | x \in R\}$. Let p = (u, v) with $p \notin l$, i.e., $g(u) + t_0\alpha(u) + \eta_0 \neq v$. We can calculate the pencil of p:

$$\mathcal{L}_{g,\alpha_{p}}^{A}=\{l(t,v-g(u)-t\alpha(u))|t\in R\}\cup\{u\}\times R.$$

Let $t := t_0$. Then we get a line

$$h:=\{(x,g(x)+t_0lpha(x)+v-g(u)-t_0lpha(u))|x\in R\}\in\mathcal{L}_{g,lpha_p}^A.$$

Since $p \notin l$, it implies that $l \cap h = \emptyset$ with $p \in h$. We have to show that h is uniquely determined. Let $t \neq t_0$. Then we have the following equations:

$$g(x) + t_0\alpha(x) + \eta_0 = g(x) + t\alpha(x) + v - g(u) - t\alpha(u).$$

Therefore, $\alpha(x)(t_0-t)=v-g(u)-t\alpha(u)-\eta_0$, and so

$$\alpha(x) = (v - g(u) - t\alpha(u) - \eta_0)/(t_0 - t).$$

Since α is bijective, it follows that $l \cap k \neq \emptyset$ for all $k \neq 0$ for all $k \neq 0$. Hence h is uniquely determined.

LEMMA 3.2. Let $(R^2, \mathcal{L}_{g,\alpha}^A)$ be an affine plane as in lemma 3.1. Then $(R^2, \mathcal{L}_{g,\alpha}^A)$ is isomorphic to $(R^2, \mathcal{L}_{0,\alpha}^A)$, i.e., g(x) = 0.

PROOF. Let $(R^2, \mathcal{L}_{q,\alpha}^A)$ and $(R^2, \mathcal{L}_{0,\alpha}^A)$ be two affine planes. Define

$$\varphi:(R^2,\mathcal{L}^A_{g,\alpha})\longrightarrow (R^2,\mathcal{L}^A_{0,\alpha}):(x,y)\longrightarrow (x,-g(x)+y).$$

Then φ is a homeomorphism. Furthermore, $(x, g(x) + t\alpha(x) + \eta) \longrightarrow (x, t\alpha(x) + \eta)$. Hence the proof is complete.

THEOREM 3.3. Let $f: R \longrightarrow R$ be a continuous planar function, let $g: R \longrightarrow R$ be a continuous function and let $\alpha: R \longrightarrow R$ be a continuous bijective function. We define an incidence structure $(R^3, \mathcal{L}_I, \Lambda)_{f,g,\alpha}$ -I with the following line set

$$\mathcal{L}_I := \{\{(x, f(x-k) + \xi, g(x-k) + t\alpha(x) + \eta) | x \in R\} |$$

$$k, \xi, \eta, t \in R\}.$$

Then:

- (1) $(R^3, \mathcal{L}_I, \Lambda)_{f,g,\alpha}$ -I is a topological R^2 -divisible R^3 -space.
- (2) The sets

$$E_{k,\xi} = \{(x, f(x-k) + \xi, z) | x, z \in R\}$$

are planes for $k, \xi \in R$.

(3) If g := 0, then $(R^3, \mathcal{L}_I, \Lambda)_{f,q,\alpha}$ -I is a product space.

PROOF. (1) We first show that $(R^3, \mathcal{L}_I, \Lambda)_{f,g,\alpha}$ -I is an R^2 -divisible R^3 -space. Let (x_1, y_1, z_1) , (x_2, y_2, z_2) in R^3 with $x_1 \neq x_2$. Hence we consider the following equations:

$$f(x_1 - k) + \xi = y_1, g(x_1 - k) + t\alpha(x_1) + \eta = z_1,$$

$$f(x_2-k)+\xi=y_2, g(x_2-k)+t\alpha(x_2)+\eta=z_2.$$

Since f is planar, there exist k and ξ uniquely. Since α is bijective, there exist t and η uniquely. Hence $(R^3, \mathcal{L}_I, \Lambda)_{f,g,\alpha}$ -I is an R^2 -divisible R^3 -space. Next we have to show that $(R^3, \mathcal{L}_I, \Lambda)_{f,g,\alpha}$ -I is topological. Let $(a_n = (x_n, y_n, z_n))_{n \in \mathbb{N}}$ and $(b_n = (u_n, v_n, w_n))_{n \in \mathbb{N}}$ be two convergent sequences in R^3 with the limits $a = (x_0, y_0, z_0), b = (u_0, v_0, w_0), x_0 \neq u_0$. We denote the join lines $a_n \vee b_n$ and $a \vee b$ as the forms:

$$a_n \vee b_n = \{(x, f(x - k_n) + \xi_n, g(x - k_n) + t_n \alpha(x) + \eta_n) | x \in R\},\$$

$$a \lor b = \{(x, f(x - k_0) + \xi_0, g(x - k_0) + t_0\alpha(x) + \eta_0) | x \in R\},\$$

 $k_n, t_n, \xi_n, \eta_n \in R, k_0, t_0, \xi_0, \eta_0 \in R.$

Let $f_n(k) := f(x_n - k) - f(u_n - k)$ and $f_0(k) := f(x_0 - k) - f(u_0 - k)$. Then k_n and k_0 are the solutions of the equations $f_n(k) = y_n - v_n$ and $f_0(k) = y_0 - v_0$, i.e., $k_n = f_n^{-1}(y_n - v_n)$ and $k_0 = f_0^{-1}(y_0 - v_0)$. Since $\lim_{n \to \infty} f_n(k) = f_0(k)$ and $\lim_{n \to \infty} (y_n - v_n) = y_0 - v_0$, it follows that $k_n \to k_0$. Since $x_n \to x_0$ and $k_n \to k_0$, therefore, $\xi_n \to \xi_0$. Since $a_n \to a$ and $b_n \to b$,

$$\lim_{n\to\infty} [g(x_n-k_n)-g(u_n-k_n)+t_n(\alpha(x_n)-\alpha(u_n))]$$

$$= g(x_0 - k_0) - g(u_0 - k_0) + t_0(\alpha(x_0) - \alpha(u_0)).$$

Since $x_n \longrightarrow x_0$, $u_n \longrightarrow u_0$ and $k_n \longrightarrow k_0$, it also implies that $t_n \longrightarrow t_0$, and so $\eta_n \longrightarrow \eta_0$. This implies also that $a_n \vee b_n \longrightarrow a \vee b$. Hence $(R^3, \mathcal{L}_I, \Lambda)_{f,g,\alpha}$ -I is topological.

The assertions (2) and (3) are clear.

We note that the method of construction in Theorem 3.3 can be generalized in the following way. Let (R^2, \mathcal{L}) be a standard R^2 -plane and let $g: R \longrightarrow R$ be a continuous function. For each line $\alpha: R \longrightarrow R$ in \mathcal{L} we take a new line $g+\alpha: R \longrightarrow R$. Let \mathcal{L}_g denote the set of all lines $g+\alpha$ with $\alpha \in \mathcal{L}$ and all verticals. Then we get an R^2 -plane (R^2, \mathcal{L}_g) which is isomorphic to (R^2, \mathcal{L}) . We apply the method in Theorem 3.3 and get a topological R^2 -divisible R^3 -space. In next theorem we give variations of Theorem 3.3.

THEOREM 3.4. Let $f:R\longrightarrow R$ be a continuous planar function, let $g:R\longrightarrow R$ be a continuous function and let $\alpha:R\longrightarrow R$ be a continuous bijective function. We define the following R^2 -divisible R^3 -spaces:

(i)
$$(R^{3}, \mathcal{L}_{II}, \Lambda)_{f,g,\alpha}$$
-II with

$$\mathcal{L}_{II} := \{\{(x, f(x-k) + \xi, g(x) + t\alpha(x-k) + \eta) | x \in R\}\} |$$

$$k, \xi, \eta, t \in R\}.$$
(ii) $(R^{3}, \mathcal{L}_{III}, \Lambda)_{f,g,\alpha}$ -III with

$$\mathcal{L}_{III} := \{\{(x, f(x-k) + \xi, g(x-k) + t\alpha(x-k) + \eta) | x \in R\}\} |$$

$$k, \xi, \eta, t \in R\}.$$
(iii) $(R^{3}, \mathcal{L}_{I'}, \Lambda)_{f,g,\alpha}$ -I' with

$$\mathcal{L}_{I'} := \{\{(x, f(x-k) + \xi, g(x-\xi) + t\alpha(x) + \eta) | x \in R\}\} |$$

$$k, \xi, \eta, t \in R\}.$$
(iv) $(R^{3}, \mathcal{L}_{II'}, \Lambda)_{f,g,\alpha}$ -II' with

$$\mathcal{L}_{II'} := \{\{(x, f(x-k) + \xi, g(x) + t\alpha(x-\xi) + \eta) | x \in R\}\} |$$

$$k, \xi, \eta, t \in R\}.$$
(v) $(R^{3}, \mathcal{L}_{III'}, \Lambda)_{f,g,\alpha}$ -III' with

$$\mathcal{L}_{III'} := \{\{(x, f(x-k) + \xi, g(x-\xi) + t\alpha(x-\xi) + \eta) | x \in R\}\} |$$

$$k, \xi, \eta, t \in R\}.$$
(vi) $(R^{3}, \mathcal{L}_{IV}, \Lambda)_{f,g,\alpha}$ -IV with

$$\mathcal{L}_{IV} := \{\{(x, f(x-k) + \xi, g(x-k) + t\alpha(x-\xi) + \eta) | x \in R\} |$$

$$k, \xi, \eta, t \in R\}.$$
(vii) $(R^{3}, \mathcal{L}_{V}, \Lambda)_{f,g,\alpha}$ -V with

$$\mathcal{L}_{V} := \{\{(x, f(x-k) + \xi, g(x-\xi) + t\alpha(x-k) + \eta) | x \in R\} |$$

$$k, \xi, \eta, t \in R\}.$$
(vii) $(R^{3}, \mathcal{L}_{V}, \Lambda)_{f,g,\alpha}$ -V with

$$\mathcal{L}_{V} := \{\{(x, f(x-k) + \xi, g(x-\xi) + t\alpha(x-k) + \eta) | x \in R\} |$$

$$k, \xi, \eta, t \in R\}.$$

Then:

- (1) Each defined space is a topological \mathbb{R}^2 -divisible \mathbb{R}^3 -space
- (2) The sets are planes

$$E_{k,\xi} = \{ (x, f(x-k) + \xi, z) | x, z \in R \}$$

for $k, \xi \in R$

PROOF. Proof is similar to the proof of Theorem 3.3.

LEMMA 3.5. Let $\alpha: R \longrightarrow R$ be a continuous bijective function with $\alpha(-x) = -\alpha(x), x \in R$. We define an incidence structure $(R^2, \mathcal{L}_{\alpha}^B)$ with the following lines:

- (1) All vertical lines $\{x\} \times R$ with $x \in R$ are in \mathcal{L}^B_{α} .
- (2) All horizontal lines $R \times \{y\}$ with $y \in R$ are in \mathcal{L}_{α}^{B} .
- (3) The sets $\{(x, e^t \alpha(x) + \eta) | x \in R\}$ and $\{(x, e^t \alpha(-x) + \eta) | x \in R\}$ with $t, \eta \in R$ are in \mathcal{L}_{α}^B .

Then $(R^2, \mathcal{L}^B_{\alpha})$ is an affine plane.

PROOF. We may assume that α is strictly monotonic. We first show that for each pair of distinct points there exists a unique line $l \in \mathcal{L}_{\alpha}^{B}$ which contains the given two points. Since all vertical and horizontal lines are in \mathcal{L}_{α}^{B} , we only show that for $(x_{1},y_{1}),(x_{2},y_{2})\in R^{2}$ with $x_{1}< x_{2}$ and $y_{1}\neq y_{2}$ there exists a unique join line $l\in\mathcal{L}_{\alpha}^{B}$ with $l=(x_{1},y_{1})\vee(x_{2},y_{2})$. Hence we consider the following equations:

$$e^t \alpha(x_1) + \eta = y_1, \ e^t \alpha(x_2) + \eta = y_2 \text{ or}$$

$$e^t \alpha(-x_1) + \eta = y_1, \ e^t \alpha(-x_2) + \eta = y_2.$$

Hence $e^t = (y_2 - y_1)/(\alpha(\pm x_2) - \alpha(\pm x_1))$. Therefore we can choose $t, \eta \in R$ uniquely. It implies that there exists a unique line $l \in \mathcal{L}_{\alpha}^B$ with $l = (x_1, y_1) \vee (x_2, y_2)$. We next show that $(R^2, \mathcal{L}_{\alpha}^B)$ holds the parallel axiom, i.e., for each line l and each point p = (u, v), there is a unique line which passes through p and parallel to l.

If l is a vertical or a horizontal line, then there exists obviously a unique join line $p \in h$ with $l \cap h = \emptyset$. Assume that l is neither vertical nor horizontal. We have the following two cases.

Case 1: There exist $t_0, \eta_0 \in R$ with $l := \{(x, e^{t_0}\alpha(x) + \eta_0) | x \in R\}$. Let p = (u, v) with $p \notin l$, i.e., $e^{t_0}\alpha(u) + \eta_0 \neq v$. We can calculate the pencil of p:

$$\mathcal{L}^B_{\alpha_p} = \{\{(x, e^t\alpha(\pm x) + v - e^t\alpha(\pm u)) | x \in R\} | t \in R\} \cup \{u\} \times R \cup R \times \{v\}.$$

Let $t := t_0$. Then there exists a line $h := \{(x, e^{t_0}\alpha(x) + v - e^{t_0}\alpha(u)) | x \in R\} \in \mathcal{L}^B_{\alpha_p}$. Since $p \notin l$, it follows that $l \cap h = \emptyset$ with $p \in h$. Next we show

that h is uniquely determined. Let $t \neq t_0$. Then we have the following equation

$$e^{t_0}\alpha(x) + \eta_0 = e^t\alpha(\pm x) + v - e^t\alpha(\pm u).$$

Therefore, $\alpha(x) = (v - e^t \alpha(u) \pm \eta_0)/(e^{t_0} \mp e^t)$. Since α is bijective and $e^{t_0} \mp e^t \neq 0$, it follows that $l \cap k \neq \emptyset$, for $k(\neq h) \in \mathcal{L}^B_{\alpha_p}$. Hence h is uniquely determined.

Case 2: There exist $t_0, \eta_0 \in R$ with $l := \{(x, e^{t_0}\alpha(-x) + \eta_0) | x \in R\}$. This case can be proved as the first case.

THEOREM 3.6. Let $\alpha: R \longrightarrow R$ be a continuous bijective function with $\alpha(-x) = -\alpha(x), x \in R$. We define an incidence structure $(R^3, \mathcal{L}_{\alpha}, \Lambda)$ with the following line set

$$\mathcal{L}_{\alpha} := \{\{(x, mx + \xi, \pm e^t \alpha (x - m) + \eta) | x \in R\} | m, \xi, \eta, t \in R\}.$$

$$\cup \{(x, mx + \xi, \eta) | x \in R\} | m, \xi, \eta \in R\}$$
. Then:

- (1) $(R^3, \mathcal{L}_{\alpha}, \Lambda)$ is a topological R^2 -divisible R^3 -space.
- (2) The sets are planes

$$E_{m,\xi} = \{ (x, mx + \xi, v) | x, v \in R \},$$

$$E_{\eta} = \{ (x, u, \eta) | x, u \in R \}$$

for $m, \xi, \eta \in R$.

PROOF. Proof is similar to the proof of Theorem 3.3.

4. H-spaces and spiral spaces

4.1. H-spaces

DEFINITION 4.1. An R^2 -plane (R^2, \Im) is called h-admissible if the following conditions hold:

- (1) All verticals $\{x\} \times R$ with $x \in R$ are in \Im .
- (2) All translations $(x,y) \longrightarrow (x+\xi,y+\eta)(\xi,\eta\in R)$ are collineations of (R^2,\Im) .
- (3) The reflection $\gamma:(x,y)\longrightarrow (x,-y)$ is a collineation of (R^2,\Im) .

We note that all the horizontals $R \times \{y\}$ with $y \in R$ are in \Im , because the reflection γ is a collineation of (R^2, \Im) .

Let (R^2, \Im) be h-admissible. We identify (R^2, \Im) with the horizontal plane $R^2 \times \{0\}$ in $R^3 = \{(x, y, z) | x, y, z \in R\}$. We apply all translations

of R^3 and all rotations with a horizontal axis and get from \Im a line set \mathcal{L} in R^3 . Formally we have the following definition: Let

$$D_{\alpha} = \left\{ \begin{pmatrix} 1 & & \\ & \cos \alpha & \sin \alpha \\ & -\sin \alpha & \cos \alpha \end{pmatrix} : \alpha \in R \right\}.$$

DEFINITION 4.2. Let (R^2, \Im) be a h-admissible R^2 -plane. We define a line set $\mathcal{L} := \{D_{\alpha}(l) + (0, \xi, \eta) | l \in \Im \text{ (not vertical) }, \alpha \in R, \xi, \eta \in R\}.$ $(R^3, \mathcal{L}, \Lambda)_R$ is called a H-space (generated by the h-admissible plane (R^2, \Im)), where $\Lambda = \{\{x\} \times R^2 | x \in R\}.$

THEOREM 4.3. Let $E = (R^2, \Im)$ be h-admissible, and let $(R^3, \mathcal{L}, \Lambda)_R$ be the H-space generated by (R^2, \Im) . Then:

- (1) $(R^3, \mathcal{L}, \Lambda)_R$ is a topological R^2 -divisible R^3 -space.
- (2) For given $\alpha, \xi, \eta \in R$, $D_{\alpha}(E) + (0, \xi, \eta)$ is a plane of $(R^3, \mathcal{L}, \Lambda)_R$.
- (3) (R^3, \mathcal{B}) is a topological (3,2,2)-geometry, where $\mathcal{B} = \{D_{\alpha}(E) + (0, \xi, \eta) | \alpha, \xi, \eta \in R\}.$

PROOF. It is clear that each line $l \in \mathcal{L}$ is closed in \mathbb{R}^3 and homeomorphic to R. We first show that $(\mathbb{R}^3, \mathcal{L}, \Lambda)_S$ is an \mathbb{R}^2 -divisible \mathbb{R}^3 -space. Let $x, y \in \mathbb{R}^3$ with $x_1 \neq y_1$.

Case 1: $(x_2, x_3) = (y_2, y_3)$. Let $E = R^2 \times \{0\} \subseteq R^3$, and let $\alpha \in R$ with $(0, x_2, x_3) \in D_{\alpha}(E)$. Hence let $u \in R$ with $D_{\alpha}(0, u, 0) = (0, x_2, x_3)$. Then $l = D_{\alpha}(R \times \{(u, 0)\}) \in \mathcal{L}$ and $x \vee y = l$. Next we have to show that l is uniquely determined. Let $\beta, \xi, \eta \in R$ and $h \in \mathfrak{F}$ with $x, y \in D_{\beta}(h) + (0, \xi, \eta)$. Let $x', y' \in h$ with $x = D_{\beta}(x') + (0, \xi, \eta)$ and $y = D_{\beta}(y') + (0, \xi, \eta)$. Then it follows that

$$x = (x_1', x_2' \cos \beta + \xi, -x_2' \sin \beta + \eta),$$

$$y = (y'_1, y'_2 \cos \beta + \xi, -y'_2 \sin \beta + \eta).$$

Therefore, $x_1' = x_1$, $y_1' = y_1$, $x_2' \cos \beta = y_2' \cos \beta$ and $x_2' \sin \beta = y_2' \sin \beta$, so that $x_2' = y_2'$, i.e., h is a horizontal line, and $D_{\beta}(h) + (0, \xi, \eta) = R \times \{(x_2, x_3)\} = l$.

Case 2: $(x_2, x_3) \neq (y_2, y_3)$. Let $\alpha \in R$ with $(0, y_2 - x_2, y_3 - x_3) \in D_{\alpha}(E)$. Let $u \in R$ with $D_{\alpha}(0, u, 0) = (0, y_2 - x_2, y_3 - x_3)$ and let $g := (x_1, 0, 0) \vee (y_1, u, 0) \in \mathfrak{F}$. Then $l := D_{\alpha}(g) + (0, x_2, x_3) \in \mathcal{L}$ with $x \vee y = l$. Next we show that l is uniquely determined. Let now $\beta, \xi, \eta \in R, h \in \mathfrak{F}$ with $x, y \in D_{\beta}(h) + (0, \xi, \eta)$. Let $x', y' \in h$ with $x = D_{\beta}(x') + (0, \xi, \eta)$ and

$$y = D_{\beta}(y') + (0, \xi, \eta)$$
. Then it follows that $x = (x'_1, x'_2 \cos \beta + \xi, -x'_2 \sin \beta + \eta)$ and $y = (y'_1, y'_2 \cos \beta + \xi, -y'_2 \sin \beta + \eta)$ $= (y_1, u \cos \alpha + x_2, -u \sin \alpha + x_3)$.

This implies $x_1 = x'_1, y_1 = y'_1$, and

$$(y_2, y_3) = (y_2' \cos \beta + \xi, -y_2' \sin \beta + \eta) = (u \cos \alpha + x_2, -u \sin \alpha + x_3).$$

Since $x_2 = x_2' \cos \beta + \xi$ and $x_3 = -x_2' \sin \beta + \eta$,

$$(u\cos\alpha + x_2, -u\sin\alpha + x_3) = (u\cos\alpha + x_2'\cos\beta + \xi, -u\sin\alpha - x_2'\sin\beta + \eta)$$

= (y_2, y_3) . This follows that $u\cos\alpha = (y_2' - x_2')\cos\beta$, $u\sin\alpha = (y_2' - x_2')\sin\beta$, therefore, $|y_2' - x_2'| = |u|$. There exists also a $\delta \in \{-1, 1\}$ with $y_2' - x_2' = \delta u \neq 0$. Therefore, $\cos\alpha = \delta\cos\beta$ and $\sin\alpha = \delta\sin\beta$. We consider the following two cases: $\delta = 1$, $\delta = -1$.

 $\delta = 1$. Then $y_2' - x_2' = u$, $\beta = \alpha + 2\pi n$ for a $n \in \mathbb{Z}$, so that $D_{\alpha} = D_{\beta}$. Since $(x_1, 0, 0) = (x_1', x_2', 0) - (0, x_2', 0) = x' - (0, x_2', 0)$ and $y' - (0, x_2', 0) = (y_1', y_2' - x_2', 0) = (y_1', u, 0)$, This implies $h - (0, x_2', 0) = g$, therefore, $h = g + (0, x_2', 0)$. Furthermore it implies that

$$D_{\beta}(0, x_2', 0) = (0, x_2' \cos \beta, -x_2' \sin \beta) = (0, x_2 - \xi, x_3 - \eta),$$

therefore,

$$D_{\beta}(h) + (0, \xi, \eta) = D_{\alpha}(g) + (0, x_2 - \xi, x_3 - \eta) + (0, \xi, \eta)$$

$$= D_{\alpha}(g) + (0, x_2, x_3) = l.$$

 $\delta = -1$. Then $y_2' - x_2' = -u$ and $\beta = \alpha + (2n+1)\pi$ for a $n \in \mathbb{Z}$. Let now σ be the mapping $(x, y, z) \longrightarrow (x, -y, z)$. Then $\sigma | E$ is a collineation of (\mathbb{R}^2, \Im) . Since $x' - (0, x_2', 0) = (x_1, 0, 0) = (x_1, 0, 0)^{\sigma}$,

$$y' - (0, x'_2, 0) = (y'_1, y'_2 - x'_2, 0) = (y'_1, -u, 0) = (y'_1, u, 0)^{\sigma},$$

therefore $h-(0,x_2',0)=g^{\sigma}$, i.e., $h=g^{\sigma}+(0,x_2',0)$. For all $p\in E$ it follows that $D_{\beta}(\sigma(p))=D_{\alpha}(p)$. Then it follows that

$$D_{\beta}(h) + (0, \xi, \eta) = D_{\beta}(\sigma(g)) + (0, x_2 - \xi, x_3 - \eta) + (0, \xi, \eta)$$

$$= D_{\alpha}(g) + (0, x_2, x_3) = l.$$

We have shown that for $x, y \in R^3$ with $x_1 \neq y_1$ there exists a unique line, i.e., $(R^3, \mathcal{L}, \Lambda)_R$ is an R^2 -divisible R^3 -space.

We have to show that $(R^3, \mathcal{L}, \Lambda)_R$ is topological. Let $(b_n)_{n \in N}$ be a sequence in $R^3, b \in R^3$ and $0 \neq b_n \longrightarrow b \neq 0$. Let l be the horizontal line passing through 0 and l' passing through b. We separate two cases:

Case 1: $l \neq l'$. Let $E = R^2 \times \{0\}$ and $\alpha \in R$ with $b \in F := D_{\alpha}(E)$. Since $b_n \longrightarrow b \in l'$, it follows that for sufficiently large n $b_n \notin l$. Since $b_n \longrightarrow b$, there exist $\alpha_n \in R$ with $\alpha_n \longrightarrow 0$ and $b_n \in D_{\alpha_n}(F)$. Then $D_{-\alpha_n}(b_n) \in F$ and $D_{-\alpha_n}(b_n) \longrightarrow b \neq 0$. Since F is an R^2 -plane, it implies that $0 \vee D_{-\alpha_n}(b_n) \longrightarrow 0 \vee b$. This implies also

$$0 \vee b_n = D_{\alpha_n}(0 \vee D_{-\alpha_n}(b_n)) \longrightarrow 0 \vee b.$$

Case: 2. l=l'. Let $E=R^2\times\{0\}$. Then $l\subseteq E$. It is also $b_2=b_3=0$. We may assume that $b_n\not\in l$ for all $n\in N$. Choose $0\le \alpha_n<\pi$ with $b'_n:=D_{\alpha_n}(b_n)\in E$. Since $b_n\longrightarrow b, b_2=b_3=0$, it is also $b'_n\longrightarrow b$. Since E is an R^2 -plane, it implies that $0\vee b'_n\longrightarrow 0\vee b=l$. We will show that $0\vee b_n\longrightarrow l$. Let $x\in l$. Then there exist $x_n\in 0\vee b'_n$ with $x_n\longrightarrow x$. Let $y_n:=D_{-\alpha_n}(x_n)\in 0\vee b_n$, and since $x_2=x_3=0$, it follows that $y_n\longrightarrow x$. Now let $x\in \lim_{n\to\infty}\sup(0\vee b_n)$. Then there exists a sequence n_k of N and $x_{n_k}\in 0\vee b_{n_k}$ with $x_{n_k}\longrightarrow x$. If $x\notin l$, by case 1, it implies that $0\vee x_{n_k}\longrightarrow 0\vee x$, but $0\vee x_{n_k}=0\vee b_{n_k}$, therefore,

$$l \subseteq \lim_{n \to \infty} \inf(0 \lor b_n) \subseteq \lim_{k \to \infty} \inf(0 \lor b_{n_k}) = 0 \lor x,$$

a contradiction, hence $x \in l$. By reduction lemma, $(R^3, \mathcal{L}, \Lambda)_R$ is topological. The assertion (2) is clear.

(3) We define an incidence relation (R^3, \mathcal{B}) . Let $P: R^3 \longrightarrow R^2_{\langle y, z \rangle}$ be the projection on the $\langle y, z \rangle$ -coordinate plane. Then $(P(R^3), P(\mathcal{B}))$ is the real affine plane with $P(\mathcal{B}) = \{P(B)|B \in \mathcal{B}\}$. Let $p = (x_1, x_2, x_3)$ and $q = (x_2, y_2, z_2)$ be two distinct points. If $(y_1, z_1) \neq (y_2, z_2)$, then there exists a unique join line $P(p) \vee P(q) = P(B)$, hence we set $p \vee_B q = B$. If $(y_1, z_1) = (y_2, z_2)$, then we set $p \vee_B = R^2 \times \{z_1\}$. Since $P: \mathcal{B} \longrightarrow P(\mathcal{B}): B \longrightarrow P(B)$ is a homeomorphism, the defined (3,2,2)-geometry is topological.

EXAMPLE 1. Let $\varphi, \varphi' : R \longrightarrow (0, \infty)$ be strictly monotonic functions. Let $l_+ := \{(x, \varphi(x)) | x \in R\}$ and $l_- := \{(x, -\varphi(x)) | x \in R\}$. We define an incidence structure (R^2, \Im_{φ}) on R^2 with the following lines:

- (1) All verticals $\{x\} \times R$ with $x \in R$ are in \Im_{φ} .
- (2) All horizontals $R \times \{y\}$ with $y \in R$ are in \Im_{φ} .
- (3) All translations of l_+ and l_- are in \Im_{φ} .

Then (R^2, \Im_{φ}) is a h-admissible R^2 -plane.

PROOF. We have to show that for a pair of distinct points (x_1, y_1) and (x_2, y_2) there exists a unique line in \Im_{φ} . Since $(R^2, +)$ is as a collineation group admissible, we will show that for two points $(0,0) \neq (x,y)$ there

exists a unique line in \Im_{φ} . Since two sets $R \times \{0\}$ and $\{0\} \times R$ are lines, we may assume that $x \neq 0$ and $y \neq 0$. Then we have the following equations: $\varphi(x+\xi) - \varphi(\xi) = y$ or $-\varphi(x+\eta) + \varphi(\eta) = y$, $\xi, \eta \in R$. By the mean value theorem, we have $\varphi'(c_1 + \xi) = y/x$ or $-\varphi'(c_2 + \eta) = -y/x$ for some $c_1, c_2 \in R$. Since φ' is also bijective, we can determine a unique ξ or η .

4.2. Spiral spaces

LEMMA 4.4. Let $f: R \longrightarrow R^2: x \longrightarrow (u(x), v(x))$ be a mapping such that for each $d \in R \setminus \{0\}$ the mapping $f_d: R \longrightarrow R^2: x \longrightarrow (u(x+d) - u(x), v(x+d) - v(x))$ is injective. Let $l(k, \xi, \eta) := \{(x, u(x+k) + \xi, v(x+k) + \eta) | x \in R\} \subseteq R^3$ with $k, \xi, \eta \in R$. Then for $(k_1, \xi_1, \eta_1) \neq (k_2, \xi_2, \eta_2)$ $|l(k_1, \xi_1, \eta_1) \cap l(k_2, \xi_2, \eta_2)| = 0$ or 1.

PROOF. Let $f_1: R \longrightarrow R^2: f_1(x) = (u(x+k_1)+\xi_1, v(x+k_1)+\eta_1)$ and $f_2: R \longrightarrow R^2: f_2(x) = (u(x+k_2)+\xi_2, v(x+k_2)+\eta_2)$. Case 1: $k_1 = k_2 = k$. Then $(\xi_1, \eta_1) \neq (\xi_2, \eta_2)$, hence $(\xi_1 - \xi_2, \eta_1 - \eta_2) \neq (0, 0)$. Since the mapping $f_1 - f_2: R \longrightarrow R^2: x \longrightarrow (\xi_1 - \xi_2, \eta_1 - \eta_2) \neq (0, 0)$ is constant, it follows that $(f_1 - f_2)(x) \neq (0, 0)$ for all $x \in R$. Therefore, $|l(k_1, \xi_1, \eta_1) \cap l(k_2, \xi_2, \eta_2)| = 0$. Case 2: $k_1 \neq k_2$. Then the mapping $f_1 - f_2: R \longrightarrow R^2: (f_1 - f_2)(x) = (u(x+k_1) - u(x+k_2) + \xi_1 - \xi_2, v(x+k_1) - v(x+k_2) + \eta_1 - \eta_2)$ is injective, because f_d is injective. In this case $|l(k_1, \xi_1, \eta_1) \cap l(k_2, \xi_2, \eta_2)| = 0$ or 1.

LEMMA 4.5. Let $\varphi, \varphi' : R \longrightarrow (0, \infty)$ be strictly monotonic functions. For each $d \in R \setminus \{0\}$ we define the function

$$g: R \longrightarrow (0, \infty): x \longrightarrow \varphi(x+d)^2 + \varphi^2(x) - 2\varphi(x+d)\varphi(x)\cos d$$
$$= (\varphi(x+d) - \varphi(x))^2 + 2\varphi(x+d)\varphi(x)(1-\cos d).$$

Then q is bijective.

PROOF. Since

$$g'(x) = 2(\varphi(x+d) - \varphi(x))(\varphi'(x+d) - \varphi'(x)) + 2(\varphi'(x+d)\varphi(x) + \varphi(x+d)\varphi'(x))(1-\cos d) > 0, \text{ hence } g \text{ is injective.}$$
 Since

$$g(x) = (\varphi(x+d) - \varphi(x))^{2} + 2\varphi(x+d)\varphi(x)(1-\cos d)$$

$$= \left[\int_{0}^{d} \varphi'(t+x)dt\right]^{2} + 2\varphi(x+d)\varphi(x)(1-\cos d)$$

$$= \left[d\varphi'(c+x)\right]^{2} + 2\varphi(x+d)\varphi(x)(1-\cos d) \text{ for } 0 < c < d.$$

Therefore, $\lim_{x\to-\infty} g(x) = 0$, $\lim_{x\to\infty} g(x) = \infty$, hence g is surjective.

We construct an \mathbb{R}^2 -divisible \mathbb{R}^3 -space which is induced from the mapping

$$f: R \longrightarrow R^2: x \longrightarrow (\varphi(x)\cos x, \varphi(x)\sin x),$$

where $\varphi, \varphi': R \longrightarrow (0, \infty)$ are strictly monotonic functions.

LEMMA 4.6. For each $d \in R \setminus \{0\}$ the mapping $f_d: R \longrightarrow R^2: x \longrightarrow (\varphi(x+d)\cos(x+d) - \varphi(x)\cos x, \varphi(x+d)\sin(x+d) - \varphi(x)\sin x)$ is injective.

PROOF. For $x_1, x_2 \in R$ let $f_d(x_1) = f_d(x_2)$. Hence $(\varphi(x_1 + d)\cos(x_1 + d) - \varphi(x_1)\cos x_1, \varphi(x_1 + d)\sin(x_1 + d) - \varphi(x_1)\sin x_1) = (\varphi(x_2 + d)\cos(x_2 + d) - \varphi(x_2)\cos x_2, \varphi(x_2 + d)\sin(x_2 + d) - \varphi(x_2)\sin x_2)$. Then

(1)
$$\varphi(x_1+d)\cos(x_1+d)-\varphi(x_1)\cos x_1=\varphi(x_2+d)\cos(x_2+d)-\varphi(x_2)\cos x_2$$
,

$$(2) \varphi(x_1+d) \sin(x_1+d) - \varphi(x_1) \sin x_1 = \varphi(x_2+d) \sin(x_2+d) - \varphi(x_2) \sin x_2.$$

We calculate $(1)^2 + (2)^2$:

$$\varphi(x_1+d)^2 + \varphi(x_1)^2 - 2\varphi(x_1+d)\varphi(x_1)(\cos(x_1+d)\cos x_1 + \sin(x_1+d)\sin x_1)$$

$$= \varphi(x_2+d)^2 + \varphi(x_2)^2 - 2\varphi(x_2+d)\varphi(x_2)(\cos(x_2+d)\cos x_2 + \sin(x_2+d)\sin x_2).$$
Also

$$\varphi(x_1 + d)^2 + \varphi(x_1)^2 - 2\varphi(x_1 + d)\varphi(x_1)\cos d$$

= $\varphi(x_2 + d)^2 + \varphi(x_2)^2 - 2\varphi(x_2 + d)\varphi(x_2)\cos d$.

By lemma 4.5, g is injective, hence $x_1 = x_2$.

Let $l(k,\xi,\eta):=\{(x,\varphi(x+k)\cos(x+k)+\xi,\varphi(x+k)\sin(x+k)+\eta)|x\in R\}$. By lemma 4.4,4.5, $|l(k_1,\xi_1,\eta_1)\wedge l(k_2,\xi_2,\eta_2)|=0$ or 1 for $(k_1,\xi_1,\eta_1)\neq (k_2,\xi_2,\eta_2)$. Next we consider the pencil of 0=(0,0,0), i.e., $\mathcal{L}_0':=\{\{(x,\varphi(x+k)\cos(x+k)-\varphi(k)\cos k,\varphi(x+k)\sin(x+k)-\varphi(k)\sin k)|x\in R\}|k\in R\}$. We rotate the pencil \mathcal{L}_0' with the x-axis, in order to get the full pencil of 0, i.e., $\alpha\in R$

$$(D_{\alpha} =) \begin{pmatrix} 1 & x \\ -\cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha \end{pmatrix} \begin{pmatrix} x \\ \varphi(x+k)\cos(x+k) - \varphi(k)\cos k \\ \varphi(x+k)\sin(x+k) - \varphi(k)\sin k \end{pmatrix} =$$

$$\left(\begin{array}{c} x \\ (\varphi(x+k)\cos(x+k) - \varphi(k)\cos k)\cos \alpha + (\varphi(x+k)\sin(x+k) - \varphi(k)\sin k)\sin \alpha \\ (\varphi(x+k)\cos(x+k) - \varphi(k)\cos k)(-\sin \alpha) + (\varphi(x+k)\sin(x+k) - \varphi(k)\sin(k))\cos \alpha \end{array} \right)$$

Then we have the full pencil of (0,0,0):

$$\mathcal{L}_{0} = \{ \{ (x, (\varphi(x+k)\cos(x+k) - \varphi(k)\cos k)\cos \alpha + (\varphi(x+k)\sin(x+k) - \varphi(k)\sin k)\sin \alpha, (\varphi(x+k)\cos(x+k) - \varphi(k)\cos k) \\ (-\sin \alpha) + (\varphi(x+k)\sin(x+k) - \varphi(k)\sin(k))\cos \alpha) | x \in R \} \\ [k, \alpha \in R] \cup \{ (x, 0, 0) | x \in R \}.$$

LEMMA 4.7. For $(0,0,0),(x,y,z) \in \mathbb{R}^3, x \neq 0$ there exists a unique join line $l \in \mathcal{L}_0$.

PROOF. Case 1: Let $x \neq 0$, (y, z) = (0, 0). Then $l := \{(x, 0, 0) | x \in R\}$ is the unique join line.

Case 2: Let $x \neq 0, (y, z) \neq (0, 0)$. Then we have the following equation

$$((\varphi(x+k)\cos(x+k) - \varphi(k)\cos k)\cos \alpha + (\varphi(x+k)\sin(x+k) - \varphi(k)\sin k)\sin \alpha, (\varphi(x+k)\cos(x+k) - \varphi(k)\cos k)(-\sin \alpha) + (\varphi(x+k)\sin(x+k) - \varphi(k)\sin(k))\cos \alpha) = (y,z).$$

Next we will show that there exists a unique $k \in R$. Through calculation we get the following equation

$$\varphi(x+k)^2 + \varphi(k)^2 - 2\varphi(x+k)\varphi(k)\cos x = y^2 + z^2, x \neq 0, (y,z) \neq 0.$$

Hence
$$g(k) := \varphi(x+k)^2 + \varphi(k)^2 - 2\varphi(x+k)\varphi(k)\cos x = y^2 + z^2$$
.

By lemma 4.5, q is bijective. Therefore there exists a unique $k \in R$. It follows that the rotation D_{α} is also uniquely determined.

THEOREM 4.8. Let $f: R \longrightarrow R^2: x \longrightarrow (\varphi(x)\cos x, \varphi(x)\sin x)$, where $\varphi, \varphi': R \longrightarrow (0, \infty)$ are strictly monotonic functions. Then there exists a topological R^2 -divisible R^3 -space which is induced from the graph(f) with the following line set

 $\mathcal{L} = \{\{(x, \varphi(x+k)\cos(x+k-\alpha) + \xi, \varphi(x+k)\sin(x+k-\alpha) + \eta) | x \in R\}\}$ $k, \alpha, \xi, \eta \in \mathbb{R} \} \cup \{(x, \xi, \eta) \mid x \in \mathbb{R}\} \mid \xi, \eta \in \mathbb{R} \}.$ This \mathbb{R}^2 -divisible \mathbb{R}^3 -space is called a spiral space generated by f.

PROOF. By lemma 4.7, and since $(R^3, +)$ is a collineation group, for $(x_1,y_1,z_1), (x_2,y_2,z_2) \in R^3$ with $x_1 \neq x_2$ there exists a unique join line. We have to show that this space is topological.

Let $(b_n = (x_n, y_n, z_n))_{n \in \mathbb{N}}$ be a sequence in \mathbb{R}^3 , $b = (x_0, y_0, z_0) \in \mathbb{R}^3$ and $0 \neq b_n \longrightarrow b \neq 0$. We have the following two cases: Case 1: $b \notin \{(x, 0, 0) | x \in \mathbb{R}\}$, i.e., $(y_0, z_0) \neq (0, 0)$. Since $b_n \longrightarrow b$, it

follows that for sufficiently large $n \in N$ $b_n \notin \{(x,0,0)|x \in R\}$. For all $n \in N$ we may assume that $b_n \notin \{(x,0,0)|x \in R\}$. We consider the join lines $0 \lor b_n$ and $0 \lor b$ as the forms $0 \lor b_n :=$

$$\left\{ \begin{pmatrix} 1 & x \\ \cos \alpha_n & \sin \alpha_n \\ -\sin \alpha_n & \cos \alpha_n \end{pmatrix} \begin{pmatrix} x \\ \varphi(x+k_n)\cos(x+k_n) - \varphi(k_n)\cos k_n \\ \varphi(x+k_n)\sin(x+k_n) - \varphi(k_n)\sin k_n \end{pmatrix} \middle| \right.$$

$$x \in R ,$$

$$0 \lor b := \left\{ \begin{pmatrix} 1 & x \\ \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} x \\ \varphi(x+k)\cos(x+k) - \varphi(k)\cos k \\ \varphi(x+k)\sin(x+k) - \varphi(k)\sin k \end{pmatrix} \middle| \right.$$

$$x \in R ,$$

$$x \in R ,$$

We write simply $0 \lor b_n = \{(x, h_n(x), k_n(x)) | x \in R\}$ and $0 \lor b = \{(x, h(x), k(x)) | x \in R\}$. Set

$$g_n(k) := \varphi(x_n + k)^2 + \varphi(k)^2 - 2\varphi(x_n + k)\varphi(k)\cos x_n,$$

$$g(k) := \varphi(x_0 + k)^2 + \varphi(k)^2 - 2\varphi(x_0 + k)\varphi(k)\cos x_0.$$

By lemma 4.5, g_n and g are homeomorphisms, and k_n , k are solutions of the equations $g_n(k) = y_n^2 + z_n^2$ and $g(k) = y_0^2 + z_0^2$, i.e., $k_n = g_n^{-1}(y_n^2 + z_n^2)$ and $k = g^{-1}(y_0^2 + z_0^2)$. Since $\lim_{n \to \infty} g_n(k) = g(k)$ and $\lim_{n \to \infty} (y_n^2 + z_n^2) = y^2 + z^2$, it follows that $k_n \to k$. Since $b_n \to b$, hence $\lim_{n \to \infty} \cos \alpha_n = \cos \alpha$ and $\lim_{n \to \infty} \sin \alpha_n = \sin \alpha$. Let $(x_1, y_1, z_1) = (x_1, h(x_1), k(x_1)) \in 0$ 0. Then $(x_1, h_n(x_1), k_n(x_1)) \in 0$ 0. This implies that $0 \lor b \subseteq \lim_{n \to \infty} \inf(0 \lor b_n)$. Since $k_n \to k$, $\lim_{n \to \infty} \cos \alpha_n = \cos \alpha$ and $\lim_{n \to \infty} \sin \alpha_n = \sin \alpha$, it follows that $\lim_{n \to \infty} \cos \alpha_n = \cos \alpha$ and $\lim_{n \to \infty} \sin \alpha_n = \sin \alpha$, it follows that $\lim_{n \to \infty} \sup(0 \lor b_n) \subseteq 0 \lor b$. It implies also that $0 \lor b_n \to 0 \lor b$. Case 2: $b \in \{(x,0,0)|x \in R\}$, i.e., $(y_0,z_0) = (0,0)$. We may assume that $b_n \notin \{(x,0,0)|x \in R\}$. Since $k_n = g_n^{-1}(y_n^2 + z_n^2)$ and $\lim_{n \to \infty} (y_n^2 + z_n^2) = 0$, This follows that $\lim_{n \to \infty} k_n = -\infty$. Hence we have $0 \lor b_n \to 0 \lor b$. By reduction lemma, this space is topological.

In [1, 3, 4, 5] Betten studied topological R^3 -spaces. An incidence structure $(\mathcal{P}^3, \mathcal{L})$ is called a topological R^3 -space if (1) each line $l \in \mathcal{L}$ is closed in \mathcal{P}^3 and homeomorphic to R, (2) each pair p, q of distinct points is contained in a unique line $p \vee q \in \mathcal{L}$ and (3) the mapping $\vee : \mathcal{P}^3 \times \mathcal{P}^3 \setminus \Delta \longrightarrow \mathcal{L}$ is continuous, where $\Delta = \{(p, p) | p \in \mathcal{P}^3\}$ denotes

the diagonal and \mathcal{L} carries the topology of Hausdorff-convergence. Naturally one can ask for extension of topological R^2 -divisible R^3 -spaces to topological R^3 -spaces. For example H-spaces can be extended as topological R^3 -spaces if we regard each vertical plane as the real affine plane. Conversely, if topological R^3 -spaces contain suitable planes which become a divisible partition in \mathcal{P}^3 , then we get from these spaces topological R^2 -divisible R^3 -spaces.

References

- [1] D. Betten, Topologische Geometrien auf 3-Mannigfaltigkeiten, Simon Stevin 55 (1981), 221-235.
- [2] _____, 4-dimensionale projective Ebenen mit 3-dimensionaler Translations-gruppe, Geom. Ded. 16 (1984), 179-193.
- [3] ______, Flexible Raumgeometrien, Atti. Sem. Mat. Fis. Modena 24 (1985), 173– 180.
- [4] _____, Einige Klassen topologischer 3-Räme, Resultate der Math. 12 (1987), 37-61.
- [5] D. Betten, C. Horstmann, Einbettung von topologischen Raumgeometrien auf R³ in den reellen affinen Raum, Resultate der Math. **6**, 27–35.
- [6] D. Betten, B. Polster, 4-dimensional compact projective planes of orbit type (1, 1), (to appear).
- [7] H. Busemann, The geometry of geodesics, Academic Press, New York, 1965.
- [8] N. Knarr, Topologische Differenzenflichenebenen mit nichtkommutativer Standgruppe, Dissertation, Univ. Kiel, 1986.
- [9] J.-H. Im, A class of topological space geometries, Note di Matematica 15 (1995), no. 2, 175-190.
- [10] W. S. Massey, Singular Homology Theory, Springer, New York, 1980.
- [11] B. Polster, Continuous planar functions, Dissertation, Erlangen, 1993.
- [12] H. Salzmann, Zur Klassifikation topologischer Ebenen III, Abh. Math. Sem. Hamburg 28, 250–261.
- [13] _____, Topological planes, Adv. in Math. 2 (1967), 1-60.
- [14] _____, Kollineationsgruppen kompakter vier-dimensionaler Ebenen, Math. Z. 117 (1970), 112-124.
- [15] _____, Kollineationsgruppen kompakter 4-dimensionaler Ebenen, Math. Z. 121 (1971), 104-110.
- [16] H. Salzmann, D. Betten, T. Grundhfer, H. Hhl, R. Lwen, M. Stroppel, Compact Projective Planes, De Gruyter. Berlin. New York, 1995.

Graduate School of Advanced Imaging Science Multimedia, and Film Chung-Ang University
Seoul 156-756, Korea

E-mail: jhim@cau.ac.kr