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A GENERALIZATION OF HOMOLOGICAL ALGEBRA

B. Davvaz AND H. SHABANI-SOLT

ABSTRACT. Our aim in this paper is to introduce a generalization
of some notions in homological algebra. We define the concepts
of chain U-complex, U-homology, chain (U, U’)-map, chain (U, U’)-
homotopy and U-functor. We also obtain some interesting results.
We use these results to find a generalization of Lambek Lemma,
Snake Lemma, Connecting Homomorphism and Exact Triangle.

1. Introduction

Defining the kernel of a hypergroup homomorphism as the recipro-
cal image of the intersection of all ultra-closed subhypergroups of its
codomain, Freni and Sureau in [3] introduced the notion of exact se-
quence of hypergroups (note that, in general, a hypergroup does not
have a zero element). If some natural conditions (which are always valid
for groups) are satisfied then the existence of a Ker-Coker sequence in a
category of hypergroups is established. They used these results to find
a homology in a supercategory of the category of groups.

Suppose that we have the following exact sequence of R-modules and
R-homomorphisms.

- i+1@’c’i_ai>ci—l‘—>“'-
Then Im(8;41) = Ker(8;) or Im(&;4+1) = 8;71({0}). It is a natural ques-
tion to ask what does happen if we substitute a submodule U;_; of
C;_1 instead of the trivial submodule {0} in the above definition. In
[2], Davvaz and Parnian introduced the concept of U-exact sequences,
which is a modification of the standard notion of exact sequences and
answered the above question. The authors then generalized some re-
sults from the standard case to the modified case. In [1], Anvariyeh
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and Davvaz continued working on this topic and focusing on application
of U-exactness, and studied U-split sequences. They established several
relationships between U-split and projective modules. Note that the no-
tion of exact sequences is a fundamental concept, and it has been widely
used in many areas such as Ring and Module Theory, Group Theory,
Homological Theory, Algebraic Topology, and Complex Theory.

Our aim in this paper is to introduce a generalization of some notions
in homological algebra. We define the concepts of chain U-complex, U-
homology, chain (U, U’)-map, chain (U, U’)-homotopy and U-functor. If
one were to choose several results to call Fundamental Lemmas of Ho-
mological Algebra, then he would include the Lambek Lemma, Snake
Lemma, Connecting Homomorphism and Exact Triangle on his list. We
use the above concepts to find a generalization of these important Lem-
mas and Theorems. We assume as known the basic notions of homolog-
ical algebra. For concepts related to decision procedures the reader may
consult the books [4], [6].

2. Chain U-complexes and chain (U, U’)-homotopy

In this section first we introduce the notions of chain U-complex
and p-th U-homology generalizing the notions of chain complex and p-
th homology, and then we establish chain (U, U’)-maps among various
chain U-complexes.

DEFINITION 2.1. We are given two family {Cp}, {Up},p € Z, of
R-modules, where every C}, contains Up,, and a family of R-module ho-
momorphisms {0, : C, — Cp_1}. The chain {Cy,U,, 8y} is called a
chain U-complex if the following conditions hold:

1) OpOp+1(Cp+1) € Up-1,

ii) Imap D) Up_l.

We put C = {Cp}, 0 = {9,} and show a chain U-complex as follows:

ls)
(CU,8) : - = Cpiy 2 Cp 2 Oy oo

It will be clear to see that every chain complex is a chain 0-Complex,
where 0 is a sequence of zero submodules. Also every chain {Cp, Up, 9}
with property 8,0p+1(Cp+1) = Up-1 is a chain U-complex. If (C,U,d)
be a chain U-complex, then Im&,41 € 0~ (Up_1). In fact, this condition
is equivalent to the first condition of Definition 2.1.
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We shall now introduce the p-th U-homology module of C. Assume
that Z,(C,U,d) = 8;1(Up-1) and Bp(C,U,d) = Imd,;1. Hence we can
associate with C the module

Z,(C,U,0)
H,(C,U,0) = 22~
P( ) BP(Ca Ua a)

Then Hy(C,U,0) is called the p-th U-homology module of C.

pEZ.

DEFINITION 2.2. Let (C,U, 8) be a chain U-complex and (C',U", &)
a chain U'-complex. The sequence F' = {F, : C, — C,} is called a

chain (U,U")-map if the following diagram is commutative. In other
words, Fp(Up) C Uy, and Fy_10, = GLFP:

(C,U,8) - — Cp 2B G, e, 1 e
le+l le le—l
ol o!
(C',U’,B') el — CI,’+1 _pii Cll’ SN C;~1 —y e

ProrosiTION 2.3. Let (C,U,0) be a chain U-complex such that
OpOp+1(Cpt1) = Up—1 and (C",U’,d') a chain U'-complex. If F = {F,}
is a chain map, then it is also a chain (U, U’)-map.

Proof. We show that F,_1(Up-1) C U;';—l- Assume that v € U,_;.
Then z = F,_1(u) € Fp_1(Up—1). Since u € Up_ there exists ¢ € Cpi1
such that u = 0,0p+1(c). Therefore

T =Fp_ 1( ) = Fp1(8,0p+1(¢)) = (Fp-10p)(Fp+1(c))
= (0,Fp)(Ops1(c)) = 0, (FpOpr1(c )) 8'(f91f,+11*_1p+1(0))
o 8p+1( Fypi1(0)).

Hence z € Up_1 and the proof is completed. ([

{

LEMMA 2.4. Z, and B, are invariant under a chain (U, U’)-map {F,},
ie.,

i) F( »(C,U,0))

i) Fp( ,,(C U,9))

g (Cl UI 8/)
(_: (C/ Ul al)

Proof. i) Suppose that z € Z,(C,U, ) then §, ( ) € Up-1, and so
Fp_1(9p(z)) € Up_,, which implies that 0, Fy,(x) € U,_,. Hence Fy(z) €
al 1(U/ ) (Cl U/ a/)

ii) If z € B,(C,U,0) then there exists y € Cp41 such that z =

Op+1(y). So F, (x) = Fp(0p+1(¥)) = (FpOp+1)(y) = (Opy1Fp+1) ()

01 (Fpr1(y)) € Imd,,, ;. Hence Fy(x) € By(C',U', &'). O
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THEOREM 2.5. Let (C,U,0) be a chain U-complex and (C',U’,d') a
chain U'-complex. If F = {F,} is a chain (U,U’)-map then it induces
R-module homomorphism H(F) = {Hy(F)} = {F,} as follows:

Ey: Hy(C,U0) — Hy(C, U, d)
T+ By(C,U,0) — Ep(z)+ B,(C'\ U, ).

Proof. We show that Fy; is well-defined. Suppose that z+ B,(C, U, 0)
= y+ Bp(C,U,8). Then z —y € By(C,U,0), and so Fy(x — y) €
B,(C',U’, &), which implies Fp(z) — F,(y) € Bp(C',U’,d'). Therefore
Fo(z)+By(C',U', 8') = Fp(y)+B,(C",U’, &) and hence F; (z) = F, (y)-
The fact that F is a homomorphism is just a reformulation of the defini
-tion. O

Let G : (C',U',8") — (C",U",8") be a chain (U’,U”)-map. Then
one obtains (GF); = G,F,, also we have I'"* = I, where I is the identity
map.

Let (C,U, ) be a chain U-complex and (C’,U’, ) a chain U’-complex.
A chain (U,U’)-map F = {F}} is called an isomorphism if F} is an R-
module isomorphism and F~1 = {Fp"l} is a chain (U, U)-map. If there
exists an isomorphism of (C,U, ) onto (C',U’,d’), we say that (C, U, 0)
is isomorphic to (C’,U’,d'). It is easy to see that isomorphism relation
of chain U-complexes is an equivalence relation.

PROPOSITION 2.6. If two chain U-complex and chain U’-complex are
isomorphic then U, ~ Uy, for all p.

Proof. The proof is straightforward and omitted. O

DEFINITION 2.7. Let (C,U, d) be a chain U-complex and (C',U’, &)
a chain U’-complex and F,G : C — C’ two chain (U,U’)-maps. Then
F and G are chain (U, U’)-homotopic, denoted by F' ~ G, if there is a
sequence D = {D,}, where D, : C, — C,,; is an R-module homomor-
phism, such that for all p € Z,

i) 0y11Dp + Dp-10p = Fp — Gy,

ii) Dp(Up) C Upyy-
The sequence D = {D,} is called a chain (U,U’)-homotopy.

LEMMA 2.8. The (U,U’)-homotopy relation “~” is an equivalence
relation.
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Proof. Plainly “ ~” is reflexive and symmetric. To check transitivity,
let F~ (G and G ~ H. Then
Oy1Dp + Dp10p = F, — Gy, 841D, + Dy 18, = G, — H,
and D,(U,) C U Dy,(Uy) € U),y. An easy calculation shows the

;D+17 4
sequence D" = {Dy}, where D) = Dy + Dj, is a chain (U, U’)-homotopy
and F, H are chain (U, U’)-homotopic. O

LEMMA 2.9. Let (C,U,9), (C',U',&) and (C",U",8") be chain U-
complex, U'-complex and U"-complex, respectively. If F ~G : C — C'
and F' ~G' : C' — C”, then

FIF~GG:C-—C".

Proof. Suppose that F},— Gy = 0,,,D, +Dp_18p, F—G,=0,,,D,
D, 18, and Dy(Up) C U’+1, D' (U’) C Uy, We have
FLF, ~ G\G,
= F(Fp, —Gyp) + (F, — G,)Gp
= F’(az’,HD + Dp-10,) + (8p41D + Dy_10,)Gy
= F’B’HD + F) Dy 10, +8{,’+1D’G +D’_16’G
= & +@)+FDpﬁ9+&HD%¥+D’ﬁ%18

Now, we put Dy = F' +1D + D G Hence the ﬁrst condltlon of Def-
inition 2.7 is sat1sﬁed For the second condition we must prove that
Dy(Up) C . Since G is a chain (U,U’)-map, we have G(Up) C U}
and so D;,G(U ) C Dy(Uy) € Uy. On the other hand, since F’ is a
chain (U’,U")-map, we get F +1D (Up) C F1(Upyy) €S US4 There-

fore Dy (Up) C U}, 1, and the proof is completed. O

The essential fact about chain (U, U’)-homotopies is given in the fol-
lowing.

THEOREM 2.10. If the two chain (U,U’)-maps F,G : C — C' are
(U,U')-homotopic, then Fy = G5(Hp(F) = Hp(G)).

Proof. Suppose that F,—Gp, = 0,1 Dp+Dyp-10p and Dp(Up) C U,y
Let x € Z,(C,U,0). Then F,(z) — Gp(z) = p+1D (x) + Dp_10p(x).
Since Gp(z) € Up-1, we have D,_1(9p(z)) € U,. Using Definition 2.7
we obtain Dp_1(8,(z)) € U, € Imd,,, = B (C’ U',d). Also we have
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0. 1Dy(z) € Bp(C',U',d). Therefore F(z) — Gp(z) € B,(C', U, d),

P
which implies

Fy(z) + BP(C', U',o) = Gp(z) + B,,(C’, U',d).
Hence F; = G;‘,. O

DEFINITION 2.11. A chain (U,U’)-map F : (C,U,8) — (C',U’,d)
is called a chain (U,U’)-equivalence if there exists a chain (U, U’)-map
G: (C,U,¥) — (C,U,09) such that FG ~ Ic and GF ~ Ic. Two
chain U-complex and U’-complex are called chain (U,U’)-equivalent if
there exists a chain (U, U’)-equivalence between them.

COROLLARY 2.12. If chain U-complex (C,U, 8) and chain U’-complex
(C',U',d) are chain (U,U’)-equivalent, then for all p, H,(C,U,0) =
H,(C", U, d).

Proof. Suppose F is a chain (U, U’)-equivalence between (C, U, 8) and
(C',U’,&'). Then there exists a chain (U’,U)-map G : (C'",U’,d') —
(C,U, d) such that FG = I¢ and GF = I¢s. By Theorem 2.10 we have
(FG), = It and (GF); = I}. On the other hand, we know (FG); =
F;G} and (GF); = GyF;. Therefore F; is an isomorphism. Hence
H,(C,U,9) = H,(C', U, d'). O

3. U-exact sequences

In this section we will use the redefined definition of a U-exact se-
quence as in [2], and will mainly give generalizations of Lambek Lemma
[5] and Snake Lemma (see [4], [6]).

DEFINITION 3.1. A sequence of R-modules and R-module homomor-

phisms

Op+2 Opt1
ce —> p+2._)Cp+1__)Cp——)...

is said to be Up-ezact (where U, is a submodule of Cy,) at Cpyy if
ImBp2 = 8,1 (Up).

Let U = {--+ ,Up41,Up, -+ }. A U-exact sequence is a sequence Up,-
exact at each of its modules. Similar to the chain U-complex, we denote
every U-exact sequence by (C,U,d). Every U-exact sequence satisfies
the condition 0p0p+1(Cpt1) € Up-1. Therefore every U-exact sequence
such that Up—1 C Imd, is a chain U-complex. A chain U-complex
(C,U,0) is a U-exact sequence if and only if for all p, H,(C,U,8) = 0.
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DEFINITION 3.2. The U-exact sequence (C, U, 8) is said to be isomor-
phic to the U’-exact sequence (C’,U’,d') if there exists a chain (U, U’)-
map F' = {F,} such that every F} is an R-module isomorphism.

PRrROPOSITION 3.3. If two U-exact and U’'-exact sequences are iso-
morphic then U ~ U’.

Proof. The proof is similar to the proof of Proposition 10 in [1]. O

Let 0 — A 25 B -2 C —0be {0}-exact at A, U-exact at B and
{0}-exact at C. Then to simplify, we say the sequence is short U-exact.
Some properties of short U-exact sequences are given in [1].

ProposiTiON 3.4. Let (C,U,d) be a chain of R-modules and R-
module homomorphisms, and (C',U’,8) be a U'-exact sequence. If in
sequence F = {F,}, every F, is an R-module isomorphism such that
F(U) = U’ and the following diagram is commutative, then (C,U,0) is
a U-exact sequence.

0,
(CUB): s Co 28 ¢ B oy — -
b Fpta L Fp L Fpy
al al
cuhoy: - — Cz/7+1 i C;’ LN Czl>—1 — ..

Proof. We show that Imd,, 1 = 8, (Up-1). Assume that z € Im0p1.
Then there exists ¢ € Cps1 such that = 9p41(c). We have Fp0p41(c) =
3, 1Fp+1(c) and so 8, Fp0p+1(c) = 0p0, 1 Fp+1(c) € U,_1, which implies
that Fp_1(80p41(c)) € U)_;. Since Fp_1(Up-1) = U,_; and Fp_1 is an
isomorphism we get 8,0p+1(c) € Up—1 or Gp(x) € Up_y. Hence Im0p41 C
8;1(Up_1).

Conversely, suppose that z € 6, 1(Up-1). Then dp(z) € Up—1. We
have Fp,_10,(z) € U)_; and so 9,F,(x) € U,_;. Also we have Fy(z) €
MU, ) = Imd,,;. Thercfore there exists y € C,.; such that
Fy(z) = 9,,,(y). Since Fpi1 is onto, there exists z € Cpy1 such
that y = Fpy1(2). Therefore Fy(z) = Opy1(Fpt1(2)) and so Fy(z) =
F,0p1+1(2) = Fp(Ops1(2)). Since F, is one to one, we get T = 9p41(2).
Hence z € Imd,1 and the proof is completed. ]

From Propositions 2.6 and 3.4 we easily deduce the following corol-
lary.
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CoROLLARY 3.5. Let (C,U, d) be a chain U-complex and (C',U’,d")
be a U'-exact sequence. If (C,U, d) and (C',U’,d’) are isomorphic, then
(C,U,0) is a U-exact sequence.

Let A R B -% C be U-exact at B. Then for simplify, we say
the sequence is U-exact. Now we shall give a generalization of Lambek
Lemma (see [3]).

LEMMA 3.6 (A Generalization of Lambek Lemma). Let

A It o2, A"
LY Ly 10
B 2 B & p

be a commutative diagram such that the first row is U’-exact and the
second row is U-exact. If V and W be submodules of B and B’, re-
spectively, such that Imy 2O W and B;(W) 2 V. Then ¢ induces an
isomorphism
(9042)—1 (U) ~ ImpNImpB
| — — .
oy (U') + ¢ (V) Imypa;

Proof. We show that ¢ induces a homomorphism of this kind. Let
z € (faz)~1(U); plainly ¢(z) € Imy. Since Boyp(x) = fan(x) € U and
,82_1(U) = Imp, we get p(x) € ImB;. Now, we define (x + az_l(U’) +
¢~ 1(V)) = p(z) +Impa;. First we show that ® is well-defined. Assume
that  + a3 H(U") + o X(V) = y + ag {(U") + ¢~ 1(V). Then z —y €
oy '(U") + ¢71(V) and so there exist a € ay ' (U’), b€ ¢~ }(V) with
z—y = a+b, hence p(z)—~p(y) = p(a)+p(b). Sincea € a; ' (U’) we have
a € Imas, thus p(a) € Impa;. Since p(b) € V, we get ¢(b) € G (W).
Thus there exists ¢ € W such that ¢(b) = B1(c). Also there exists
d € A’ such that (d) = ¢. Thus w(b) = B1(c) = Bi(¥(d)) = pai(d),
which implies ¢(b) € Impai, hence p(z) — ¢(y) = p(a)+ ¢(b) € Imypa;.
Therefore ® is well-defined. Clearly ® is a homomorphism. To show it
is epimorphic, let y € Imp N ImB;. There exists z € A with p(z) =y,
s0 faz(z) = Pap(x) = Baly). Also we have y € B H(U) or Ba(y) € U.
Therefore we obtain fag(x) € U or z € (faz) ™ (U).

Finally we show that ® is monomorphism. Assume that z+a5 1 U+
¢ V) € Ker®. Then &(z + a;*(U') + ¢~ 1(V)) = Impa, or o(z) +
Impo; = Impa;, which implies p(z) € Impa;. There exists z € A’ such
that p(x) = pa;(2) and so z — a1(z) € Keryp, thus there exists ¢t € Kery
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with 2 = t + a;(2z). We have a1(2) € Imog = a5 (U’) and t € o~ 1(V).
Therefore z € ay 1 (U”) + ¢ 1(V). O

COROLLARY 3.7. Let
Al 2N A a2, A"
L Lo 16
B’ N B P, B
be a commutative diagram such that the first row is U’-exact and the sec-
. _ . . . A (00{2)_1((])
ond row is U-exact. Then  induces an isomorphism ® : = U) e 10)

~  ImpNImfG; )

Imepa;
LEMMA 3.8. Suppose we have the following commutative diagram
of R-module homomorphisms in which the first row be U-exact at As,

V-exact at Ag and {0}-exact at A4, the second row be {0}-exact at Bs,
U'’-exact at Bz and V'-exact at By :

As oAy Ih o4y o4 o4
las lag las L ag loa
B % By * B % B, % B,

i) If g, 4 are monic and as Is epic then og is monic.
ii) If ag, 0 are epic and o is monic then ag is epic.
iii) If every vertical arrow but ag is an isomorphism then ag is also
isomorphism.

Proof. The proof is straightforward and omitted. O

LEMMA 3.9 (A Generalization of Snake Lemma). Let
v Lop Lo o
la LB Ly

be a commutative diagram such that

1) The first row is U’'-exact and the second row is U-exact,
2) W C Ima,

3) U C Imy,

4) g(V)CU, f(W)=V,

5) U Sy (V).
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R —1
Then there is a “connecting homomorphism” w : %2 — Cokera

such that the following sequence is exact:

v ; -1
a-tw) 25 gy 2 U(,U) . Cokera I Coker 2 Cokery.

Proof. 1t is very easy to see ¢'(871(V)) C v~1(U) and f'(a=Y(W)) C
B~1(V). Therefore we have the following sequence:

f | 1(w) g/lg~1(v)

o (W) g71(V) VD).
Suppose 7 is the canonical homomorphism Ty Y (U) — 77(1](,U). We
denote f, = f'|o-1(w) and g, = 7g'|g-1(y). Then

o a1 g v 1U)

On the other hand, f and ¢ 1nduce the following homomorphism: f* :

iz — 1 9 iy — 1 bV 0+ Ima — f(a) + Imf and b ¢

ImB — g(b) + Imy. Hence we have the following sequence:

(1) o (W)

(11) Cokera 2 Coker( <, Coker-y.

Now, we show that there exists a homomorphism w : 7*(1]$U) — Cokera
“connecting” the sequence (I) and (II). In fact, w is defined as follows.
Assume that z + U’ € L U(U) Choose v’ € B’ with ¢/(b') = 2. Since
9B(t') = vg'(t) = 7(2) € U, we get (V') € g~*(U) and so B(¥') €
Imf. Since f is one to one, f : A — Imf is bijective. Therefore
there exists a unique element a € A such that (') = f(a), which
implies a = f~1B(V). Define w(z + U’) = a + Ima. We show that w is
well-defined, that is, w(z + U’) is independent of the choice of ¥’ € B'.
Indeed, let ¥ € B’ with ¢g’(b"”) = 2. Then there exists a’ € A such that
ﬂ(b”) = f(a’). We obtain ¢’(t/ = ¥") = 0, and so V/ — bV’ € Kerg’ C
'“L(U") = Imf’. Hence there exists a ¢ A’ with b’ — " = f'(a). Since
Bf’(a) fa(a), B = b") = fo(a), which implies fla—d') = fo(a),
so a — @’ = a(a) € Ima. Therefore a + Ima = @’ + Ima. Clearly w is a
homomorphism. Since the proof of the exactness is rather long, it will
be convenient to divide into several steps.
Step 1. Imf, = Kerg,.
Suppose V' € Kerg,. Then ¢'(¥') + U’ = U’, and so ¥ € ¢~} (U").
Hence there exists x € A’ such that ¥ = f’(z). Now, it is enough to
show that z € o™ 1(W). We have fa(zx) = Bf'(z) = B(t'). Since V' €
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B~L(V), B(V) eV, which implies that fa(z) € V. Since f(W) = V and
f is monic, we have a(z) € W or z € a~}(W). Therefore Kerg,, C Imf!.
The proof of converse is easy.

Step 2. Img, = Kerw.
Suppose that ¢’(b') + U’ € Img.,, where b’ € 3~1(V). By definition of
w we have

w(g' W)+ U") = 89" g (¥) +Ima = f71B(¥) + Ima.

Since ¥ € B7YV), B(¥) € V. Since f(W) = V and f is monic,
f71B(b) € W, which implies f~*A(b') € Ima. Hence w(g'(b') + U') =
Ime, which implies ¢’(b') + U’ € Kerw. Therefore Img,, C Kerw.

Conversely, let ¢ + U’ € Kerw with ¢/ € y~1(U). Then w(d +U’) =
Ima and so f713¢'71(¢/) + Ima = Ima. Thus there exists z € A’ with
f718g () = alz), and so Bg'~H(¢) = fo(z)). We have Bg'~1(c/) =
Bf'(x), so B(¢~(c) — f'(z)) = 0. Therefore ¢'~1(c') — f'(x) € Ker3 C
B~(V), and hence

glgd )~ F'(@) =d'g () =g fl (&) + U = + U,
which implies ¢ + U’ € Img.,. Thus Kerw C Img/.

Step 3. Imw = Ker f*.
Consider w(c¢' + U’) € Imw. Then f~'8¢'~1(c') + Ima € Imw. Hence

FHBY TN+ Ime) = £ 71 8¢ )+ ImB = B¢’ (¢)+Imp = Imf.

Conversely, suppose a + Ima € Kerf*. Then f*(a + Ima) = Img,
which implies f(a) € Imf and there exists b’ € B’ with B(¢/) = f(a).
Since gf(a) € U, gB(b') € U. Clearly v¢'(b') € U and so ¢'(b') € v~ 1(U).
Therefore

w(gd @) +U") = f18g g (V) + Ima = f71B(V) + Ima = a + Ima.

Step 4. Imf* = Kerg*.

Suppose f*(a + Ima) € Imf*. Then ¢g* f*(a + Ima) = gf(a) + Imyy.
Since gf(a) € U C Imv, g*f*(a + Ima) = Imy and so f*(a + Ima) €
Kerg™.

Now, let b+ Imf3 € Kerg*. Then g(b) € Im~y and there exists ¢’ €
C' such that g(b) = v(c’). Since ¢ is epic, there exists b’ € B’ with
g' (V') = . Hence g(b) = v(4'(t')) and so g(b) = gB(V'), which implies
g(b— B()) = 0. Then b — B(V') € Kerg C g~}(U) = Imf. Therefore
there exists a € A such that b— 8(V') = f(a), so b+ImfB = f(a)+ImB =
f*(a + Ima), thus b+ Im@B € Imf*. Therefore the proof of lemma is
complete. O
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COROLLARY 3.10. Let

7 ’

A L B L0 —o0
la 18 L
0— A t, B & ¢
be a commutative diagram such that
i) The first row is U'-exact and the second row is U-exact
i) U' €y~ Y(U) and U C Imy.

Then the following sequence is exact:

-1 * *
7 U(/U) —~ Cokera EAN Coker 2 Cokery.

e g.
Kerao — Kerg —

4. Connection between chain U-complexes and U-exact se-
quences

The purpose of this section is to establish a few of the basic properties
of the U-homological algebra.

DEFINITION 4.1. Let {(C™, U™ (™))} be a sequence of chain
U(™)_complexes, and {F(™ : (C™ ym) gm)y — (Cm+D) yim+1)
A+ a sequence of chain (U™, U(™+1))-maps. The sequence {{C™),
U, 90mN} is called U-ezact if for all p, the following sequence is Up-
U(m) U(m+1) U(m+2) . .
sUp 2 Up yYUp s "7 }

C;(;m+2) N

exact, where U, = {---

(m) (m+1)
Lo o gmen)

DEFINITION 4.2. Let (C,U,9), (C',U’,&') and (C",U",9") be chain
U-complex, chain U’-complex and chain U”-complex, respectively. The
sequence

0 — (C,U,8) = (C",U',0") = (", U",8") — 0

is called a short U-ezact sequence if for all p, the following sequence is a
short Uz',’ -exact sequence:

0— C, 25 2ol — .



A generalization of homological algebra 893

THEOREM 4.3 (A Generalization of Connecting Homomorphism).
Let
0— (C,U,8) -5 (¢, U, 0) S5 (", U",8") — 0
be a short U-exact sequence and F(U) = U’. For each p, there is a
homomorphism,

v Hp(C",U",8") — H,_1(C,U,0d)
defined by
2"+ By(C",U",8") - F; 48,0, (2") + Bp-1(C, U, 9).

Proof. Consider the commutative diagram with the first row is a short
U,-exact sequence and the second row is a short Uy_;-exact sequence:

Fp

0— G, . oo o
L 9y 19, Lo
Fp—1 ’ Gp-1 1"

Suppose 2" € Z,(C",U",0"). Then 8,(z") € U)_;. Since G, is epic,
we may lift 2" to a;, € C}, and then push down to &'(ay) € C,_;. By
commutativity,

Cp-18)(al) = 8"Gyldl) = Bll(=") € U

p-1
It follows that 0,(a;,) € G;_ll( »—1), Which implies 0,(ap) € ImF,_,
Then there is a unique (F,—; is monic) ap—; € Cp—y with Fp_j(ap_1) =
9,(a;,), hence a, 1 = Fp__lla;,(a;). Suppose we had lifted 2" to b, € C,.
Then the construction above yields b,—1 € Cp_1 with F,_1(bp—1) =
9y (b,). Therefore Gp(a;, — by,) = 0 then aj, — by, € KerG, € G~HU))) =
ImF,, so there is x € Cp with a, — b, = Fp(x). By commutativity,
BI’,(a;, - b;,) = Fp_10,(x). We obtain Fp_i(ap—1 — bp—1) = Fp_10p(2),
and so ap—1 — by_1 = Op(z). Hence ap_1 + Bp_1(C,U,0) = bp_1 +
By_1(C,U,0). There is thus a well- defined homomorphism

Cp-1
Bp-—l(Ca Ua 8) '
It is easy to check that this map sends B,(C”,U”,d") into 0 and also
ap—1 = Fp_}la;,G; 1(2") € Z,_1(C,U,d). Therefore the formula does give
a map

ZP(C/I, U//’all) SN

Hp(C,/,U”,a//) N p—l(C’ l’]7 8),
as desired. 0
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THEOREM 4.4 (A Generalization of Exact Triangle). If
0— (cU,0) 5 (¢ v,8) - (¢ U, 8" —0

is a short U-exact sequence with F(U) = U’, then there is an exact
sequence of R-modules

*

Fr G
. — H,(C,U,8) = H,(C',U",8') =% H,(C",U",8")

22 Hy, 1(C,U,8) — -+

In other words, the triangle

H(C,U,8) £, H(C,WU', )
22N S G*
H(C//, Ull’all)

is exact.

Proof. The proof is similar to the proof of exact triangle theorem and
omitted (see [4]). O

THEOREM 4.5 (Naturality). Consider the commutative diagram with
the first row is a short U-exact sequence with F(U) = U’ and the second
row is a short V-exact sequence with (V) =V’

0— (C,U,8) 5 vy S o ure)y —o0

Lf lyg Lh

0-— (D,V,o) % (D', V'.o!) 2 (D", V"o") —o0.

Then there is a commutative diagram of modules with exact rows:
F; ’ 1o G;; ’” ”" ’ Yp
S H(CU.B) B H(C' U0 B H(CU,U,87) B Hypy(C,UO) e
[ g, Uk Li
* ’

e Hy(D.V.a) ~E H,(D'.V'.o') -~ Hy(D".V" o") B H, ((D,V,0) — - .

Proof. Exactness of the rows is Theorem 4.4. The first two squares
commutative because Hp, is a functor. A routine but long chase gives
commutativity of the square involving connecting homomorphism. [
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5. U-exact functor and I/-functor

In this section we introduce the notions of left (right) U-exact func-
tor and covariant U-functor, and prove a few results concerning these
concepts.

DEFINITION 5.1. Let R and S be commutative rings, and let T
be a covariant additive functor from R-modules to S-modules. We say
that T is left U-ezact precisely when the following condition is satisfied:
whenever
is a U-exact sequence of R-modules and R-homomorphisms, the induced

sequence

0 7)) ") ™ 1(0)

of S-modules and S-homomorphisms is T(U)-exact.

PROPOSITION 5.2. HOMR(D, —) is a left U-exact functor.

Proof. Suppose 0 — A 2> B Y, C is U-exact. We show that the

sequence 0 — HOMg(D, A) -& HOMg(D, B) > HOMg(D,C) is
HOMPpg(D,U)-exact. We must prove:
i) Kerg = 0 (that is, ¢ is a monomorphism),
it) Imp C =~ (HOMRg(D,U)),
iii) =Y (HOMR(D,U)) C Img.

i) Assume that f € Kerp. Then @(f) = 0. By definition of @ we have
@f =0, which implies ¢f(z) = 0 for all z € D. Since 0 — A -2 B is
exact, y is monomorphism and f = 0.

ii) Suppose f € Img. Then there exists ¢ € HOMRg(D, A) such
that ¢(g) = g = f. Therefore f(z) € Imy for all z € D. Since
Imyp = ¢~} (U) by U-exactness, we have f(zx) € 9~ 1(U) or ¥(f(x)) € U
and so ¥vf € HOMRg(D,U), or ¥(f) € HOMRg(D,U), which implies
that f € ¢ L(HOMg(D,U)). Therefore Img C ¢y~ (HOMg(D,U)).

iii) Let f € ¥~ Y(HOMg(D,U)). Then there exists g € HOMg(D,U)
such that ¢(f) = ¢f = g, and so ¥ f(x) € U for all z € D. Therefore
f(z) € ¥~1(U) and hence f(z) ¢ Imyp. Since ¢ is a monomorphism,

¢ : A — Imy is an isomorphism. If h is the composite D . Im fC

Imyp e A, then h € HOMRg(D, A) and f = ph = ¢(h) and so f € Imp.
Therefore ¢~} (HOMRg(D,U)) C Img. O



896 B. Davvaz and H. Shabani-Solt

DEFINITION 5.3. We say a covariant additive functor T is right U-
ezact precisely when the following condition is satisfied: whenever

AP B Y Cc—0

is a U-exact sequence of R-modules and R-homomorphisms, the induced

sequence

74 " 7By ™™ T(0) — 0

of S-modules and S-homomorphisms is T'(U)-exact.

DEFINITION 5.4. We say a covariant additive functor T is U-eract

if for every short U-exact sequence 0 — A 2, B Y C — 0 the

induced sequence 0 — T(A) i) T(B) ) T(C) — 0 is a short

T (U)-exact sequence.

PROPOSITION 5.5. Let S be a multiplicative closed subset of R and
the sequence 0 — A %, B C — 0 be U-exact. Then the
sequence

0— 51455 1pE Y 10—

is a short S™1U-exact sequence.

Proof. See Proposition 12 in [2]. Therefore S~1is a U-exact functor.
O

DEFINITION 5.6. Let T be a covariant functor. Then 7 is called a
covariant U-functor if for every homomorphism ¢ : A — B and every
submodule U of B with U C Im¢ the following condition holds:

T(U) C ImT(y).

PROPOSITION 5.7. HOMRg(D, —) is a covariant additive U-functor if
D is a projective R-module.

Proof. Assume that ¢ : A — B is a homomorphism and U a
submodule of B with U C ¢(A). We show that HOMg(D,U) C
G(HOMR(D, A)). Let 3 € HOMg(D,U). Then Img C U, and so
ImB C U C Im¢p. Hence we have the following diagram:

D

S 1B
A 5 Ime.
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Since D is a projective R-module, there is « € HOM (D, A) such that
pa = 3, which implies ¢(a) = 8. Therefore § € Img@. and proof is
completed. O

PROPOSITION 5.8. Let T be a covariant U-functor and (C,U, D) a
chain U-complex. Then the sequence

T(aﬂ;l) T(ap)

(T(C), T(U),T(9)) : -+ —T(Cp41) T(Cp) — T(Cpr)— -

is a chain T(U)-complex.

Proof. We must show that

i) T(Op)T(Bp1) (T(Cp)) € T(Upor),

ii) ImT'(0p) 2 T(Up-1).

i) Since (C, U, 0) is a chain U-complex, we have 0,0p41(Cpt+1) C Up_1.
Then the homomorphism 0p0,41 : Cpt1 — Up—1 is defined. Hence
T(8pOpt1) : T(Cpy1) — T(Up-1). Since T is covariant, T(0p) T (Op+1) :
T(Cpt1) — T(Up-1). Therefore T(0p)T (Op+1)(T(Cp+1)) € T(Up-1).

ii): Since (C,U, 0) is a chain U-complex, we have Imd, 2 U,_1. Since
T is a U-functor and 9, : C, — Cp_1, we get

T(ap)(T(Cp)) 2 T(Up—l)-
|

PROPOSITION 5.9. Let (C,U, d) be a chain U-complex, (C',U’,d') a
chain U'-complex and F = {F,} a chain (U,U’)-map. IfT is a covariant
U-functor, then TF = {T'(F,)} is a chain (T(U),T(U’))-map.

Proof. Since Fp 10, = 0,F, and T is covariant, T(F,-1)T(8,) =
T(0,)T(Fp). We know F,(U,) € U,. Hence Fyly, : Up — U, is defined.
Therefore T'(F)(T(Up)) € T(Up). O

PRropPoOsSITION 5.10. Let T be a covariant additive U-functor. If F, G :
C — C' are two chain (U,U’)-homotopic, then TF, TG : T(C) —
T(C") are two chain (T'(U),T(U"))-homotopic.

Proof. The proof follows from Definition 2.7. According to Theorem
2.10 and Proposition 5.9, we have T*(Fp) = T*(Gp). a
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