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TORSION IN THE COHOMOLOGY
OF FINITE H-SPACES

YoungGl CHOI

ABSTRACT. We study torsion phenomena in the integral cohomol-
ogy of finite H-spaces X through the Eilenberg-Moore spectral
sequence converging to H*(Q2X;Z,). We also investigate how the
difference between the Z,-filtration length f,(X) and the Z,-cup
length ¢, (X') on a simply connected finite H-space X is reflected in
the Eilenberg—Moore spectral sequence converging to H*(QX; Zp).
Finally we get the following result: Let p be an odd prime and X
an n—connected finite H-space with dim QH*(X;Z,) < m. Then
H*(X;Z) is p-torsion free if p > m—;—l ,

0. Introduction

In this paper we study the behavior of the Eilenberg-Moore spec-
tral sequence for a path-loop fibration converging to H*(2X; Z,,) to get
the information about p-torsion in the integral cohomology of a sim-
ply connected finite H-space X. First, we investigate how the differ-
ence between the Z,-filtration length and the Z,-cup length, f,(X) —
cp(X), is reflected in the Eilenberg-Moore spectral sequence converging
to H*(QX;Z,). We show that f,(X) is equal to ¢p(X) if and only if
the Eilenberg-Moore spectral sequence converging to H*(QX; Z,) col-
lapses at the FEo-term. We obtain that f»(Y) and co(Y') are equal for
any simply connected finite H—space Y with associative mod 2 homol-
ogy ring. Hence the Eilenberg-Moore spectral sequence converging to
H*(QY; Z3) collapses at the Ep-term.
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We also show that for an odd prime p, H*(X; Z) is p—torsion free if
and only if f,(X) is equal to ¢,(X) if and only if the Eilenberg-Moore
spectral sequence converging to H*(2X; Z,,) collapses at the Ey-term.

We study the suspension map and find the condition under which the
suspension map is injective. Finally exploiting the suspension map, we
get the following theorem.

THEOREM 3.2. Let p be an odd prime and X an n—connected finite
H-space with dim QH*(X; Z,) < m. Then H*(X;Z) is p-torsion free
lfp 2 m;l .

The author is very grateful to Professor Seonhee Yoon for valuable
comments on the paper.

1. Preliminaries

Let X be a simply connected finite H-space and R a commutative
ring with unity. Given a path-loop fibration, QX — PX — X, there is
a Eilenberg-Moore spectral sequence of C, (2X; R), that is, a first quad-
rant spectral sequence of bicommutative and biassociative Hopf algebras
{E",d"} converging to H.(X; R), where

E? = Tor#- O@XR(R R).

In this Eilenberg-Moore spectral sequence, the R-filtration length of X
is defined in {14] as follows:

DEFINITION. The R-filtration length of X, fr(X), is at most k if
E>, = 0for p > k+ 1. The R-filtration length of X is equal to k if
fr(X) <kbut fr(X) <k—1is false.

That is, fr(X) is the smallest integer k such that EX, = 0 for all
p > k + 1. The R-cup length of X is defined as follows:

DEFINITION. The R-cup length of X, cp(X), is defined as the largest
integer k such that there exist z; € H*(X;R), i« = 1,--- ,k with a
nontrivial cup product z; -- - xy.

When R = Z,,, we will use the notation f,(X) and c,(X) for fz (X)
and cz,(X), respectively.

Given a path—loop fibration, X — PX — X, there also exists a
second quadrant Eilenberg-Moore spectral sequence {E,,d,} of bicom-
mutative and biassociative Hopt algebras, where

(1) Ey = Tory-(x.r)(R, R) as Hopf algebras,
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(2) Ex = Eox(H* (22X R)) as Hopf algebras,

(3) d, has bidegree (r, —7 + 1).
It is shown in [5, 9] that the primitives of Eo(H*(Q2X; R)) have exter-
nal degree —1 or —2 and F, = H*(2X; R) as coalgebras. Hence the
primitives of F, corresponds to the primitives of H*(2X; R).

We denote the primitives and the indecomposables of H*(X; Z,) by
PH*(X;Z,) and QH*(X;Z,). respectively. In the Eilenberg-Moore
spectral sequence, we have a suspension map

o:QH"(X;Z,) Tor;li’(*X;ZP)(Zp, Z,)
= E; " - E' ¢ HHQX; Z,).

Since the elements of Tm‘;{i‘&: 2,)(Zp, Zp) are primitive and permanent
cycles in the Eilenberg-Moore spectral sequence, the above map induces
the suspension homomorphism o : QH*(X; Z,) — PH*1(QX; Z,).

THEOREM 1.1. [8] Let X be a simply connected H-space. Then the
following is true.
(a) The suspension o : QH*"(X; Z,) — PH®*"(QX; Z,) is injective.
(b) The suspension o : QH"“"(X: Z,) — PH°¥(QX; Z,) is surjective.
(¢) The quotient PH*"*"(0X; Z,) /o (QH*¥(X; Z,)) is obtained by tran
-spotence.
(d) The elements in ker o are dual to elements in the image of the ho-
mology transpotence.

The filtration length f,(X) is defined in terms of homology and the
cup length ¢,(X) is defined in terms of cohomology. But f,(X) can be
compared with ¢,(X) by duality between homology and cohomology.

First, we interpret f,(X) in terms of the cohomology spectral se-
quence. Let {E,} be the spectral sequence dual to the Eilenberg-Moore
spectral sequence { E" } converging to H.(X; Z,), that is, E3* = (E7 ,)*.
Then {E,} is a spectral sequence of bicommutative biassociative Hopf
algebras converging to H*(X; Z,), Ecc = Eo(H*(X; Z,)), and the prod-
uct in E'xc corresponds to the cup product in H*(X; Z,). If EZ, = 0 for
all s > sy, then E3* = 0 for all s > sg. Hence f,(X) is the same as the
smallest number sy such that EZ.' = 0 for all s > sq.

Next, we can define the filtration degree of an element x of H*(X; Z,)
as follows. Each 2 € H*(X; Z,) can be considered as an element of ES;}
since B = Ey(H*(X; Z,)). The number s is called the filtration degree
of z. The filtration degree of an element x € H,(X;Z,) can be defined
in the same way.



966 Younggi Choi

The difference fp(X)—cp(X) comes from the generator of H*(X; Z,)
of filtration degree greater than 1, which corresponds to a primitive
element in H,(X; Z,) through dualizing process. Since the primitives
of H,(X; Zp) is of filtration degree either 1 or 2, the difference f,(X) —
- cp(X) comes only from those primitives in H,(X; Z,) of even filtration
degree, which are transpotence elements. So in terms of cohomology,
the difference comes from the elements in ker o by Theorem 1.1 (d).

THEOREM 1.2. [14] Let X be a finite H-space. If ker o is generated
by Z1,... ,Tn, which have heights pht,... ,p"» in H*(X;Z,), then

Fo(X) = 6(X) = 30 - 1),

The above theorem is originally expressed in terms of o* where it is
induced by the canonical map XQX — X which is the adjoint of the
identity on ©2X. Then we have the following commutative diagram,

H*(X;2,) —%— H*"Y(QX;Z,)
q l T inclusion
QH*(X;ZP) - PH*_l(QX§Zp)a

where ¢ is the quotient map. From the diagram, we may identify the
elements of QH*(X; Z,) with generators of H*(X; Z,) by the abuse of
language.

2. Eilenberg-Moore spectral sequence and f,(X) — ¢,(X)

From now on, unless stated otherwise, the Eilenberg—Moore spectral
sequence converging to H*(Q2.X; Z,) is the Eilenberg-Moore spectral se-
quence for a path-loop fibration converging to H*(QX; Z,) with

E2 = TorH*(X;Zp)(Zp’ Zp) .

Similarly, the Eilenberg-Moore spectral sequence converging to H.(Q2X;
Zp) is the Eilenberg-Moore spectral sequence with

E? = Cotor™X%) (7, 7).
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THEOREM 2.1. Let X be a simply connected finite H-space. Then
the following conditions are equivalent.

(1) fp(X) —cp(X) =0

(2) kero = 0;

(3) The Eilenberg-Moore spectral sequence converging to H*(Q.X;
Z,) collapses at the E, -term,

(4) The Eilenberg-Moore spectral sequence converging to H.(QX;
Z,) collapses at the E? -term.

Proof. (3) is equivalent to (4) by duality.

(1) implies (2). It follows from Theorem 1.2.

(2) implies (3). Consider the Eilenberg-Moore spectral sequence con-
verging to H*(2X; Z,). In the spectral sequence of Hopf algebras, the
source of first nontrivial differential is an indecomposable element and
its target is a primitive element. Moreover, every primitive element has
either —1 or —2 external degree. Hence the spectral sequence collapses
at the Ey—term if and only if every primitive element of —1 or —2 ex-
ternal degree survives permanently. Since ker o = 0, any generator of
the external degree —1 can not be a target of first nontrivial differential.
The primitive elements of the external degree —2 are transpotence ele-
ments of even dimension. The generators of external degree less than —2
is of the form, ~y,-(:),7 > 2, which is also even dimensional. Therefore
a primitive element of external degree —2 can not be a target of the
first nontrivial differential, either. Hence the Eilenberg—Moore spectral
sequence collapses from the Fy—term.

(3) implies (1). Assume that E; = E,. Then there exist only
trivial differentials in the Eilenberg-Moore spectral sequence. Hence
every suspension element survives permanently. Since H*(QX;Z,) is
evenly generated for any finite H-space X [10,11], there does not exist
any even dimensional generator in H*(X; Z,). Since QH®"*"(X; Z,) =
PHeyen(X; Z,) by duality, there is no even dimensional primitive ele-
ment in H,(X; Z,). This implies that there is no transpotence element.
Since the difference between the filtration length and the cup length
comes only from transpotence elements in H,(X;Z,), we obtain that
fo(X) —p(X) = 0. O

First we consider the case of an even prime.

THEOREM 2.2. [12] In any simply connected finite H—space with
associative mod 2 homology ring, any generator in a degree of the form
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2" + 2"tk — 1 for k > 0 lies in the image of the Steenrod operation
Sq2'k,

When » = 0, any 2k dimensional generator lie in the image of Sq*
and Sq*(zx) = z2. Hence there is no even dimensional generator in mod
2 cohomology. Hence we can get the following.

COROLLARY 2.3. In any simply connected finite H—space X with
associative mod 2 homology ring, we have f3(X) — co(X) = 0.

Proof. Since the suspension on QH°(X; Z,) is injective and there
is no even dimensional generator by Theorem 2.2, kerc = 0. Hence
f2(X) — c2(X) = 0 by Theorem 2.1. O

The above is a generalization of the result in [14] that f5(X)—-c(X) =0
in every compact, simply connected, simple Lie group. From Theorem
2.1, we get the following corollary.

COROLLARY 2.4. The followings hold for every simply connected fi-
nite H-space with associative mod 2 homology ring.

(1) f2(X) — c2(X) = 0;

(2) ker o =0;

(3) The Eilenberg— Moore spectral sequence converging to H*(QX;
Z3) collapses from the FE,-term;

(4) The Eilenberg— Moore spectral sequence converging to H,(1X;
Z5) collapses from the E*—term.

Hence we have that H*(QG; Z;) = Tory«(¢.z,)(Z2, Z2) as a coalgebra
for every Lie group G.
Now we turn to the case of odd primes p.

THEOREM 2.5. Let X be a simply connected finite H-space and p
an odd prime. Then H*(X;Z) is p-torsion free if and only if f,(X) —
cp(X) =0

Proof. Assume that H*(X;Z) is p-torsion free for an odd prime
p. For a finite H-space X, H*(X;Z) is p-torsion free if and only if
H*(X;Z,) is an exterior algebra on odd dimensional generators [1].
Hence ker ¢ = 0 by Theorem 1.1 (a). Therefore we have f,(X)—c¢,(X) =
0 by Theorem 2.1.
Assume that the cohomology of X has p—torsion. Then by the univer-
sal coefficient theorem, there should exist an even element in H*(X; Z,).
Since £2=0 for any odd dimensional generator x, the even element must
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be an indecomposable element, say y. Since H*(2X; Z,) is even dimen-
sional for any finite H-space X, we have that o(y) = 0 in H*(QX;Z,).
Hence ker o # 0, so that f,(X) — ¢p(X) # 0 by Theorem 2.1. |

COROLLARY 2.6. Let p be an odd prime and X a simply connected
finite H-space. If H*(X; Z) has p—-torsion, then cat(X) is strictly greater
than ¢, (X).

Proof. If H*(X;Z) has p -torsion for an odd prime p, then f,(X) —
cp(X) # 0. So ¢p(X) < fp(X). Since fp(X) < cat(X) [14], we have that
cp(X) < cat(X). O

From Theorem 2.1 and Theorem 2.5, we get the following result,
which may be also derived from the results of [9,12].

COROLLARY 2.7. Let X be a simply connected finite H—space and
p an odd prime. Then H*(X;Z) is p—torsion free if and only if the
Eilenberg Moore spectral sequence converging to H*(QX; Z,) collapses
at the Fo—term.

From above results, we can detect the behavior of the Eilenberg-
Moore spectral sequence converging to the loop space of compact, simply
connected, simple Lie groups. For odd primes p, the only following
compact, simply connected, simple Lie groups have p-torsions in their
integral cohomology [13]:

i

G= F47E6)E77E8

p=3:
p=2>5: G = Eg.

Il

Hence for each of the above pairs (G, p), the Eilenberg-Moore spectral
sequence converging to H*(2G:Z,) does not collapse at the Er—term
and f,(G) — ¢,(G) # 0 by Theorem 2.5 and Corollary 2.7. But for
the other pairs (G, p) including every classical Lie group, the Eilenberg-
Moore spectral sequence to H"(Q2G; Z,,) collapses at the Ep—term and
fo(G) — ¢,(G) = 0.

For even prime, compact, simply connected, simple Lie groups have
2-torsions in their integral cohomology only for the following cases [13]:

G = Spin(n),n Z 7, GQ,F4,E6,E7,E8.

But the Eilenberg Moore spectral sequence converging to H*(Q2G; Z3)
collapses at the FEy-term by Corollary 2.4.
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EXAMPLE 2.8. For each odd prime p, there exist a simply connected

finite complex X whose localization X (p) at p is an H-space [7] with
H*(X(p); Zp) = Zp[BP z3]/(BP'x3)P) ® E(z3, P 3).

Since the action of 8 on P!z is non trivial, the cohomology of X (p) has
p-torsion. So by Corollary 2.7, the Eilenberg-Moore spectral sequence
converging to H*(Q2X (p); Z,) does not collapse at the Fa—term. In fact,
o(BPas) # 0, fo(X(p)) — cp(X(p)) = p— 1, and there is the differ-
ential from [z3]---|z3] (p factors) to [8P'z3] in the E,_; term of the
Eilenberg-Moore spectral sequence.

But the above results do not hold if the finiteness condition is omitted.

EXAMPLE 2.9. If X is torsion free for a prime p, then H*(Q?¥2X; Z)
has p-torsion of order p [6]. But the Eilenberg—Moore spectral sequence
converging to H*(Q23£2X; Z,) collapses at the Er-term.

By considering Theorem 2.5 for a finite complex with certain property,
we get the following result.

THEOREM 2.10. Let X be a finite complex such that H*(X;Q) is
generated by odd degree generators. If H*(X; Z) is p—torsion free for
an odd prime p, then fp(X) — c,(X) = 0.

Proof. Assume that f,(X)—c,(X) # 0. Since the difference between
the filtration length and the cup length comes only from transpotence
elements, there is an even dimensional generator in H*(X; Z,). Consider
the Bockstein spectral sequence converging to

(H*(X; Z)/torsion) ® Z, with Eg = H*(X;Z,).

In this Bockstein spectral sequence, the differential can be interpreted in
terms of the higher Bockstein operators. Since H*(X; Q) is generated by
odd degree generators, even dimensional transpotence can not survive
permanently. Hence it should be target of some differential in the Bock-
stein spectral sequence. This implies that H*(X; Z) has a p—torsion,
which is a contradiction. Therefore f,(X) — c,(X) = 0. O

The real Stiefel manifolds of type SO(m)/SO(2n+1), m > 2n+1, all
complex Stiefel manifolds SU(m)/SU(n), m > n, and all quaternionic
Stiefel manifolds Sp(m)/Sp(n), m > n satisfy the hypothesis of above
theorem, so the Z,-filtration lengths are equal to the Z,-cup lengths for
these spaces for any odd prime p. In fact, we have that f,(X)—c,(X) =0
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for all real, complex, quaternionic Stiefel manifolds X for all primes p
and the Eilenberg-Moore spectral sequence converging to H*(2X; Z,)
collapses at the Ey-term. Hence H*(QX; Z,) = Torg-(x,z2,)(Zp, Zp) as
a graded vector space.

3. Torsion in finite H—space

Now we study the suspension map to get the main result.

THEOREM 3.1. Let X be an n—connected H—space. Then
c:QH(X;Z,) —» PH"Y(QX; Z,)

is injective when i < 4n + 1 for p = 2, and when i < pn + 1 for any odd
prime p.

Proof. We consider the Eilenberg-Moore spectral sequence converg-
ing to H*(QX; Z,). Since H(X;Z,) =0for 0 <i < nand QH*(X; Z))
= Tor;’(};zp)(Zp, Z,), we have that E; ™" =0 for 0 < t < n. So from
the bar construction, we have

Ey*' =Tory(y.y (Zps Zp) =0 fort < ns.

Since this spectral sequence is a spectral sequence of a Hopf algebra,
the source of the first non zero differential is a generator and the target
is a primitive element.

This Eilenberg—Moore spectral sequence is a second quadrant spectral
sequence and d,. : E %t — E7#T7=7+1 for r > 2 so that generators
of the external degree —1 or —2 can not be the source of non zero
differentials. From the Borel decomposition, H*(X; Z,) = ®;A; as an
algebra where each A; is a Hopf algebra on a single generator, that
is, an exterior algebra, a polynomial algebra, or a truncated polynomial
algebra on a single generator. Hence Tory«(x;z,)(Zp, Zp) = ®:B; where
each B; is an exterior algebra or a divided power algebra on a single
generator. Moreover, the divided power algebra I'(z) on a generator z
is

I'(z) = @r>pYer () as an algebra,

where vyor (z) = |-+ |z] ( 2% times ) on the level of the bar resolu-
tion. The external degree of v, (z) is —2* and only 7.« (z), k > 1 are
generators of external degree less than —1 in Torg«(x; Zp)(Zp, Zp).
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Therefore the source of first non zero differential is a generator of the
external degree less than or equal to —4 for p = 2, and less than or equal
to —p for any odd prime p. So the possible first non zero differential is

—4.4n+4 —1,4n+2
ds : By — Es for p=2,

dp_1: Ep__pip’”’p — E;_l’lp"” for odd primes p.
Hence when t < 4n + 1 for p = 2, no element of E, M is in the im-
age of any non trivial differential. Similarly when ¢ < pn + 1 for any
odd prime p, no element of E, bt is in the image of any non trivial
differential. Since the suspension map is defined by o : QH'(X; Z,) =
Torl;l,’(’X;Zp)(Zp,Zp) = E; """ — EZM, o is injective if i < 4n + 1 for
p=2, and if i < pn + 1 for any odd prime p. O

Using above theorem, we prove the following main result of this paper.

THEOREM 3.2. Let p be an odd prime and X an n-—connected finite
H-space with dim QH*(X;Z,) < m. Then H*(X; Z) is p-torsion free
ifp> T-”n;l

Proof. Consider the Eilenberg-Moore spectral sequence converging
to H*(QX; Z,). By Theorem 3.1, 0 : QH'(X; Z,) — PH'"'(QX; Z,) is
injective if i < pn+1 for any odd prime p. So if m < pn+1, then o is an
injective map, that is, ker o = 0. By Theorem 2.1, the Eilenberg-Moore
spectral sequence converging to H*(2X; Z,) collapses at the Ea-term.
Hence by Corollary 2.7, H*(X; Z) is p-torsion free. g

We conclude this paper with the following question about any simply
connected H-space without the finiteness condition.

QUESTION. Let p be a prime and Y a simply connected H-space
such that H*(Y; Z) is p-torsion free. Then does the Eilenberg-Moore
spectral sequence converging to H*(2Y; Z,) collapse at the Ep-term ?

For each prime p, H*(QX; Z) is p-torsion free for any simply con-
nected finite H-space X [10, 11]. If the question is positive, the Eilen-
berg ~Moore spectral sequence converging to H* (Q2X;Z,) collapses
at the E,—term. In fact, for any compact, simply connected, sim-
ple Lie group G, the Eilenberg-Moore spectral sequence converging to
H*(Q2G; Z,) collapses at the Eo-term [2, 3, 4, 15] unlike one converging
to the cohomology of single loop space.
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