Empirical Equations for Thermodynamic Physical Properties of Freon-23 and HFC-227ea

Freon-23과 HFC-227ea의 열역학적 물성에 관한 실험식

  • 김재덕 (한국과학기술연구원, 국가지정 초임계유체연구실) ;
  • 이윤우 (한국과학기술연구원, 국가지정 초임계유체연구실) ;
  • 송명석 (초정밀분리기술센터, 인하대학교, 화학공학과) ;
  • 노경호 (초정밀분리기술센터, 인하대학교, 화학공학과)
  • Published : 2002.09.01

Abstract

For Freon-23, a conventional extinguished agent regulated by Montreal Protocol and HFC-227ea, its alternative, the empirical equations were correlated in terms of saturated pressure, density, viscosity, enthalpy and surface tension. They were obtained by regression analysis from the experimental data in the literature. The empirical equations of saturated pressure were expressed as the second and third order function of temperature. The empirical equation of density was expressed as compressibility factor and saturated pressure by a function of temperature. The empirical equation of viscosity was formulated as a power function. Heat capacities as well as enthalpies were well fitted by empirical form of the second-order temperature. Finally, surface tension simply has linear function form in terms of temperature.

소화제인 Freon-23과 몬트리올 의정서에 의해서 규제받는 CFC의 대체 물질인 HFC-227ea의 물성(포화압력, 밀도, 점도, 엔탈피, 표면장력)에 관한 실험식을 구하였다. 문헌에서 얻은 실험값을 이용하여 다항식등의 회귀분석에 의해서 실험식을 얻었다. 포화압력은 온도에 대하여 각각 3차와 2차의 실험식으로 표시하였다. 압축인자와 포화압력을 이용하여 온도에 대한 밀도에 관한 실험식을 제시하였다. 점도는 온도에 대한 지수함수로 표시하였고, 엔탈피는 열용량과 마찬가지로 온도에 대한 2차 함수로 정의하여 나타내었다. 표면장력에 대해서는 간단한 1차 온도에 대한 선형적인 관계가 있었다.

Keywords

References

  1. S.Y. Lee, and D.M. HA, 'Newest Chemical Engineering safety Engineering', Donghwagisul press, Seoul(1977)
  2. United Nation Environmental Program (UNEP). 'Montreal Protocol on Substances That Deplete The Ozone Layer(1987)
  3. Luft-Kaltetecknik, Vol. 9, No.3, 125-7(1973)
  4. J. Klomfar, J, Hruby, and O. Sifner, 'Measurement of the (T, p, p) behaviour of HFC-227ea in the liquid phase', J, Chem. Thermodynamic, 26, pp.965-970(1994) https://doi.org/10.1006/jcht.1994.1113
  5. J.M. Smith, H.C. van Ness, and M.M. Abbott, 'Introduction to Chemical Engineering Thermodynamics', 5th ed.(1997).
  6. W.L. McCabe, J,C. Smith, and P. HarriottUnit, 'Operations of Chemical Engineering', 5th ed.(1993)
  7. R.C. Reid, J,M. Prausnitz, and B.E. Poling, 'The Properties of Gases & Liquids', 4th ed.(l988)
  8. RB. Stwewart, R.T. Jacobson, and S.G. Penoncello, 'Thermodynamic Property of refrigerants', ASHRAE
  9. L. Shi, Y.Y. Duan, M.S. Zhu, L.Z. Han, and X. Lei, 'Vapor pressure of 1,1,1,2,3,3,3,-heptafluoropropane', Fluid phase Equilibia, 163, pp.l09-117(1990)
  10. VA Gruzdez, R.A. Khairulin, S.G. Komarov, and S.V. Stankus, 'Thermodynamic Properties of HFC227ea', Tntemational Joumal of Thermophysics, Vol. 23, No. 3(2002)
  11. C. Zhang, Y.Y. Duan, L. Shi, M.S. Zhu, and L.Z. Han, 'Speed of Sound, Ideal-gas Heat capacity at Constant Pressure, and Second Virial Coefficients of HFC-227ea', Fluid Phase Equilibria, Vol. 178, 1-2, pp.73-85(2001) https://doi.org/10.1016/S0378-3812(00)00477-5
  12. M.L. Robin, 'Thermodynamical Properties of HFC-227ea', Great Lakes Chemical Corporation
  13. Y.C. Hou, and J.J. Marin, 'Physical and Thermodynamic Property Trifluoromethane', AICHE, Joumal 5th, 125-129(1959) https://doi.org/10.1002/aic.690050126
  14. K.H. Row, M.S. Song, S.G. Han, J,D. Kim, and Y.W Lee, 'Empirical Equations For Physical Properties of Halon-1305 and $CO_2$' T. of Korean Institute of Fire Sci. & Eng. Vol. 16, No. 2(2002)