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Periodic Properties of a Lyapunov Functional of
State Delay Systems

Young Soo Suh

Abstract - This paper is concerned with properties of a Lyapunov functional of state delay systems. It is shown that if a state
delay system has a pure imaginary pole for some state delay, then no Lyapunov functional satisfying a Lyapunov condition
exists periodically with respect to change of the state delay. This periodic property is unique in state delay systems and has
been well known in the frequency domain stability conditions. However, in the time domain stability conditions using a
Lyapunov functional, the periodic property is not known explicitly.
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1. Introduction

Stability conditions of state delay systems [1] can be
classified into frequency domain methods and time domain
methods. In a frequency domain method [2- 3] , stability
is checked based on pole location of a system. In a time
domain method, stability is checked based on the unique
existence of a Lyapunov functional [4]. A frequency
domain method is easier to apply for some cases, and for
other cases, a time domain method is easier to apply.
Since these two stability conditions play complementary
roles, their relationship is important.

Of particular interest is when a system lies on the
borderline of stable and unstable regions: i.e., the
right-most pole of a system lies on the imaginary axis. It
is known that there exist no unique Lyapunov functional
satisfying a Lyapunov condition if a state delay system has
a pure imaginary pole. For systems without state delay,
this relationship can be explicitly shown uvsing a simple
algebraic manipulation [5]. For state delay systems, the
relationship is only partially known: periodic properties of
a Lyapunov functional are not known explicitly.
Periodicity is a unique feature in state delay systems: if a
state delay system has a pure imaginary pole for some
state delay %, then the system has pure imaginary poles
for all state delay A"+ p*s, i=1,2,--- for some p = 0.
Since there does not exist a unique Lyapunov functional
when a system has a pure imaginary pole, there should
exist no Lyapunov functional periodically with respect to
change of state delay 4. In this paper, this periodic nature
of a Lyapunov equation is explicitly shown, which will
clarify the relationship between a frequency domain
method and a time domain method of state delay systems.
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This paper is organized as follows. In Section II, after
a frequency domain stability condition and a time domain
stability condition is briefly reviewed, a main result of this
paper (periodic properties of a Lyapunov functional) is
given in Theorem 3. In Section I, Theorem 3 is proved.
A numerical example is given in Section IV and
conclusion is given in Section V.

2. A Pure Imaginary Pole of a State Delay System

Definition: for a matrix ¥ « C ™" given by
My My = My

M= |Ma Mxn =" Mo
Ml My = Moy

"M denotes the complex conjugate transpose of M ; the
column string cs M is defined by

cs M=[ mymgy-m, | 127 29" M. 2 [ oo
,mlnm2n”'mnn]’EC " Xl-

Consider the following system:
x() = Ap(t) + Ax(t—h), (1)

where x()=R " is a state and 2z = ( is a state delay. The
characteristic equation of Eq. (1) is given by

det (sI—Ay—Ae ) =0. )

A root of Eq. (2) will be also called a pole of Eq. (1).
First, the frequency domain stability condition [1] is
given as follows.

Theorem 1: System (1) is stable if and only if all the
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roots of its characteristic equation are in the open left half
of the complex plane.

Secondly, for the time domain stability condition,
consider a Lyapunov functional V{(x(9, P, k) for Eq. (1)
defined by

VG, P)=
(O Po( )+ ()" [ Por(x(t— h+5)ds 3)

+ fohx(t_ h+ %) P(») dr, x(2)
+ fohfohx“— b+ 7) P y(7, ) x(t— h+ s)dsdr.

The following theorem [6] states the stability of Eq. (1)
using the Lyapunov functional of Eq. (3).

Theorem 2: The system (1) is stable if and only if given
Q=@ <R "">(, there exists a unique self-adjoint P
ande > 0 such that

WVx(D, P, k) > ex(8)'x(8) (4)
4 Vx(t), P, == (1) Q{1 ©)
for all x(#).

Remark 1: The Lyapunov conditions of Egs. (4) and (5)
are not in the standard form [4]. In the standard form, for
example, Eq. (4) should be changed to

Wx(f), P h)=
ex(D'x(H+

5
ezfo x(t—h+»)'x(t— b+ »)dr

where €,>( and ¢5> 0. However modified forms in Egs.

(4) and (5) are more convenient in many cases as in [7].
An explicit expression of the periodic properties of a
Lyapunov functional is derived based on these modified
forms.

A unique feature of a pure imaginary pole of Eq.(1) is
its periodicity with respect to A: suppose Eq. (1) has a
pure imaginary pole jw, w>( for 2= #", that is

det Gwl— Ag— Aje ™) =9. (6)
Then defining
hi= b+ 2w, i=1,2,, @)

we can show that Eq. (1) has the same pure imaginary
pole jw for all »;

det(jw]—— AO _ Ale '-J'w(h'+2i7r/w)) — ®)
det(jwl— Ag— Are ") =0.

In the next section, we will prove the following
relationship, which is a main result of the paper.

Theorem 3: If Eq. (1) has a pure imaginary pole jw for
h="Fh", there exists no Lyapunov functional V(x(9, P,
4 ) satisfying the Lyapunov conditions of Egs. (4) and (5)
for all 4; defined by Eq. (7).

Remark 2: The proof of Theorem 3 can also be
obtained without the resuits in the next section. It is
known that if Eq. (1) has a pure imaginary pole jw for 2,
then Lyapunov functional V(x(#), P,k) does not exist
uniquely. Combining this fact with Eq. (8), we can prove
Theorem 3. However, this proof provides no insight into
the periodic properties of a Lyapunov functional V. Our
proof given in the next section will explicitly clarify the
periodicity of a Lyapunov functional V.

3. Proof of Theorem 3

First, a way to characterize the solution of Eg. (5) is
given in the next theorem [8].

Theorem 4: Given @= ', a solution P to Eq. (5) is
given by
POO = K(O),
Pu(n=K(»A, 0<r<h, ©

_[A/K(r—s)'A;, 0<s<v<h
Pulr,9) {Al'K(s—r)Al, 0<r<s<h

where K(r) is given by the following two equations:

cs K(0) + cs K(0)' =— csQ (10)
< csK(7) 1_ csK(7)
%a;:SK(h“ 7)] H[ csK(h— r)]
0<r<h. Yy

Matrix H is defined as follows. Let E ;; denote an X #
matrix with (4, j)-entry equal to 1 and all other entries equal
to zero, and let EcR™ " be the block matrix E=[ E il

(ie., the (7,7)-block of E is E ;). Let DOER”ZX”2 and
D,eR™™ be defined by

Dy

diag(AO', "",AO’)
D, ’

diag(A,’,---,A;)

respectively. The matrix He R¥>? is defined as follows:

2[ D, DE

= 12
“‘DIE —DO ' ( )
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Remark 3: A solution of Eq. (5) can be found by
solving the linear equation of Eq. (10) and the differential
equation of Eq. (11) simultaneously.

The next lemma relates a pure imaginary pole of Eq. (1)
and a Lyapunov equation of Eq. (11) by showing that a
pure imaginary pole of (1) is an eigenvalue of the matrix H.

Lemma 1: If jw, we= R is a pure imaginary pole of Eq.
(1), then it is an eigenvalue of f.

Proof: We will show that there exists p%=0=C?" such
that (ju/— H)v=1_. Since jw is a pure imaginary pole of
Eq. (1), there is x+0=C” such that

(jwl—Ay— Ae ""Mx=0. (13)
Let g C" be defined by

ay Lk
a=| 92| =xe 2,

a, (14)

where ¢;, 1 <7< is a complex number. Let v be defined by

o= [_z_] (15)
u
where
s
u=| @¥|lec”.
a.x (16)

It is obvious y==() from the construction of v and the fact
x+0. We will show that this v satisfies (jwl— H)v= 0.
From the definition of H, we obtain

. _ — ]W—D() —DIE
(jwl—Hyv [ DE  jwl+ Dy’

(17)

Partition (jwI— H)v into 2% complex vectors and let the
-th block of (jw/— H)v be denoted by »,=C”. Then
r; 1<i<n is given by

Y = (]’LUI—‘ Ao) —a,-x -
—Al(El,-afl+E2,~a2+ e +Em'd,,) X.

Noting the following relationship

(Eyay+ Egey++E a,) x

_wh

=(E e+ Eyay+-++E,0,) e °
_ _jwh

=e a.a.

we obtain

fwh

jwh _
2 - 2
- ar,-Alafe

i

Gwl— Ay) a;ae
_ duwh )
aje 2 (ij—AO—Ale“””h)a

a;(jwl— Ay— Ae "Mx=0,1<i<n.

¥

The last equality is from Eq. (13). Since »,, ,=—

7. 1<i<n (see Eq. (17)), we have #»,=0,n+1

<i<2n. Hence, (jwl— Hyv=( where y=().

Remark 4: In Lemma 4, we obtain a method to
compute a pure imaginary pole of Eq. (1), which can be
used to derive a delay-dependent stability condition [9]. In
[10}], similar methods for computing a pure imaginary pole
are proposed by investigating properties of the polynomial
in Eq. (2). It is interesting to note that the imaginary poles
of Eq. (2) can also be computed from a constant matrix,
which is used to compute a Lyapunov functional.

The next lemma explicitly shows that no unique
Lyapunov functional satisfying Eq. (5) exists when Eq. (1)
has a pure imaginary pole.

Lemma 2: If Eq. (1) has a pure imaginary pole ju, then
no unique Lyapunov functional V{x(#, P,#) satisfying
Eq. (5) exists.

Proof: No unique Lyapunov functional satisfying Eq. (5)
exists if K(») satisfying Egs. (10) and (11) does not exist
uniquely. A solution K(») to Eqgs. (10) and (11) can be
formulated using a linear relation between @ and K(() as
follows:

Q= L,(h) (K(0)), (18)

where L,(%) denotes a linear operator.
Eq. (18) has a unique solution if and only if the equation

0= L,(K(0)) (19)

has a unique solution K((0) =(0. Hence if Eq. (19) has a
nonzero solution K((), then no unique K(#) satisfying
Egs. (10) and (11) exists. A nonzero solution will be
constructed in the next. Using the definitions of x and ¢ in
the proof of Lemma 1, let p; be defined by
— lwhk
n=ve °?,

then

2)12[—?&%] and (wl— Huv,=0
ue

where
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a,a
U= :

a,a
Let cs K(7) be defined by
cs K(n=e™uy+e ™ u, (20)
then cs K(») satisfies Eq. (11). To see this, first note that
[ ]

+[ o —ejw(J:i | w

= ey +e " v,

I

[ cs K(»)
cs K(h—r7)

Then the left side of Eq. (11) is given by
_d
dr

% cs K(h—7)

» . i . -
CS K( ) :]we/wrvl_]we Jwr 0

while the right side of (11) is given by

H(e™ v +e ™ v)=e™Hy, +e ™H v, 2

Since H is a real matrix, we have (— jwl— H) v;=0.
Hence the left side and the right side of Eq. (11) coincide;
that is, cs K(#) defined by Eq. (20) satisfies Eq. (11).
Now if we show K(») satisfies Eq. (10) with @=0, then
K{(0) is a solution to Eq. (19). That is, we have to show
the following:

cs 0= cs K(0) + cs K(0)' . 22)
Note that (from Egs. (10) and (21))
es K(» = [I ow[CSC}{‘,}” ]
= fwle™u— e uy),
and thus
cs K(0)=julu— ). 23)

From the definition of cs and the definition of #;, we
have

cs KO0) = jw( u— uy). (24)

From Egs. (23) and (24), we obtain Eq. (22). Therefore
cs K(0)=u;+ w, is a solution to Eq. (19). It remains
to show that K(0)=0. From ¢=0, at least one diagonal
element of K(()) is not zero since the ;-th diagonal element

of K(0) is 2a; a;.
Now we are ready to prove Theorem 3.

Proof of Theorem 3: In the proof of Lemma 2, all the
terms dependent on / are in the form of ¢””. Hence if
Lemma 2 is satisfied for 2= %", then Lemma 2 is also
satisfied for all 4; defined by Eq. (7) from the fact that
o ~HH 2inlw) _ , —juh

4. Numerical example

Example 1: Consider the following system:

SN —0.5
£ ()= [ 09 L

+[ 21x(t h).

(25)

Constructing [ as defined in Eq. (12), we obtain

—0.5 0.9 0 0 -2 0 -1 0
-0.5 —-15 0 0 1 0 1 0

0 0 —-05 09 0 -2 0 -1
0 0 —-05-15 0 1 0 1

H=| 2 0 1 0 05-09 0 O
-1 0 -1 0 05 15 0 0

0 2 0 1 0 0 0.5 —0.9

0 -1 0 -1 0 0 05 1.5

Eigenvalues of H are computed as
{%1.3333/,1.1035+0.3458/, — 1.1035 +0.3458/, +1.3346}

and the
0.4726 —0.151071

following is satisfied with x=[0.8683,
and A" =1.6834:

i 7
__Ale 71.3333 )JC:O.

(1.3333/—

This verifies Lemma 1: 1.3333/, the imaginary pole of
Eq. (25), is an eigenvalue of H. From the proof of
Lemma 2, we can show that K(7) defined by Eq. (20) is
a nonzero solution to Eq. (19), where K(0) is given by

—[0.6539 0.1196
K [0.5922 0.2135]'

5. Conclusion

In this paper, periodic properties of a Lyapunov
functional are shown by investigating a solution of a
Lyapunov equation. This result clarifies the relationship
between the frequency domain stability conditions and the
time domain conditions. As a byproduct of the result, an
easy way to compute pure imaginary poles of a state delay
system is also obtained.
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