Characterization of Reverse Leakage Current Mechanism of Shallow Junction and Extraction of Silicidation Induced Schottky Contact Area for 0.15 ${\mu}{\textrm}{m}$ CMOS Technology Utilizing Cobalt Silicide

코발트 실리사이드 접합을 사용하는 0.15${\mu}{\textrm}{m}$ CMOS Technology에서 얕은 접합에서의 누설 전류 특성 분석과 실리사이드에 의해 발생된 Schottky Contact 면적의 유도

  • 강근구 (충북대학교 물리학과) ;
  • 장명준 (아남반도체 선행개발팀) ;
  • 이원창 (현대전자주식회사 메모리연구소) ;
  • 이희덕 (충남대학교 전자공학과)
  • Published : 2002.10.01

Abstract

In this paper, silicidation induced Schottky contact area was obtained using the current voltage(I-V) characteristics of shallow cobalt silicided p+-n and n+-p junctions. In reverse bias region, Poole-Frenkel barrier lowering influenced predominantly the reverse leakage current, masking thereby the effect of Schottky contact formation. However, Schottky contact was conclusively shown to be the root cause of the modified I-V behavior of n+-p junction in the forward bias region. The increase of leakage current in silicided n+-p diodes is consistent with the formation of Schottky contact via cobalt slicide penetrating into the p-substrate or near to the junction area and generating trap sites. The increase of reverse leakage current is proven to be attributed to the penetration of silicide into depletion region in case of the perimeter intensive n+-p junction. In case of the area intensive n+-p junction, the silicide penetrated near to the depletion region. There is no formation of Schottky contact in case of the p+-n junction where no increase in the leakage current is monitored. The Schottky contact amounting to less than 0.01% of the total junction was extracted by simultaneous characterization of forward and reverse characteristics of silicided n+-p diode.

본 논문에서는 코발트 실리사이드가 형성된 얕은 p+-n과 n+-p 접합의 전류-전압 특성을 분석하여 silicidation에 의해 형성된 Schottky contact 면적을 구하였다. 역방향 바이어스 영역에서는 Poole-Frenkel barrier lowering 효과가 지배적으로 나타나서 Schottky contact 효과를 파악하기가 어려웠다. 그러나 Schottky contact의 형성은 순방향 바이어스 영역에서 n+-p 접합의 전류-전압 (I-V) 동작에 영향을 미치는 것으로 확인되었다. 실리사이드가 형성된 n+-p 다이오드의 누설전류 증가는 실리사이드가 형성될 때 p-substrate또는 depletion area로 코발트가 침투퇴어 Schottky contact을 형성하거나 trap들을 발생시켰기 때문이다. 분석결과 perimeter intensive diode인 경우에는 silicide가 junction area까지 침투하였으며, area intensive junction인 경우에는 silicide가 비록 공핍층이나 p-substrate까지 침투하지는 않았더라도 공핍층 근처까지 침투하여 trap들을 발생시켜 누설전류를 증가시킴을 확인하였다. 반면 p+-n 다이오드의 경우 Schottky contact이발생하지 않았고 따라서 누설전류도 증가하지 않았다. n+-p 다이오드에서 실리사이드에 의해 형성된 Schottky contact 면적은 순방향 바이어스와 역방향 바이어스의 전류 전압특성을 동시에 제시하여 유도할 수 있었고 전체 접합면적의 0.01%보다 작게 분석되었다.

Keywords

References

  1. The Natonal Technology Roadmap for Semiconductors, Semiconductor Industry Association(SIA), 1997
  2. A. Chatterjee, M. Rodder and I.C.Chen, 'A Transistor Performance Figure-of-Merit Including the Effect of Gate Resistance and its Application to Scaling to Sub-0.25-${\mu}m$ CMOS Logic Technologies', IEEE Trans. Electron Devices, Vol. 45, pp. 1246-1252, June 1998 https://doi.org/10.1109/16.678526
  3. R. Liu, D.S. Williams, and W.T. Lynch, 'A study of the leakage mechanism of silicided n+/p junctions', J. Appl. Phys, Vol. 63, pp. 1990-1999, 1988 https://doi.org/10.1063/1.341099
  4. J. Lin, S.Banerjee, J. Lee, and C.Teng, 'Soft Breakdown in Titanium-Silicided Shallow Source/Drain Junctions', IEEE Electron Devices Letters, Vol. 11, pp. 191-193, 1990 https://doi.org/10.1109/55.55246
  5. Hi-Deok Lee, 'Characterization of Shallow Silicided Junctions for Sub-Quarter Micron ULSI Technology - Extraction Of Silicidation Induced Schottky Contact Area', IEEE Trans. Electron Devices, Vol. 47, pp. 762-767, Apr. 2000 https://doi.org/10.1109/16.830991
  6. H. D. Lee, and Y. J. Lee, 'Arsenic and phosphorus double ion implanted source/drain junction for quarter- sub-quarter micron MOSFET technology,' IEEE Electron Device Lett, Vol. 20, pp. 42-44, Jan, 1999 https://doi.org/10.1109/55.737568
  7. D.K. Sohn, J.S. Park, B.H. Lee, J.U. Bae, K.S. Oh, S. K. Lee, J.S. Byun, and J.J. Kim, 'High Thermal Stability and Low Junction Leakage Current of Ti Capped Co Salicide and its Feasibility for High Thermal Budget CMOS Devices', in IEDM Tech. Dig., 1998, pp, 1005-1008 https://doi.org/10.1109/IEDM.1998.746524
  8. J.C.S. Woo, J.D. Plummer, J.M.C. Stork, 'Non-Ideal Base Current in Bipolar Transistors at Low Temperatures', IEEE Trans. Electron Devices, Vol. 34, pp. 130-138, Jan, 1987 https://doi.org/10.1109/T-ED.1987.22895
  9. J. R. Yeargan, and H. L. Taylor, 'The Poole-Frenkel Effect with Compensation Present,' J. Appl. Phys., Vol. 39, pp. 5600-5604, Nov. 1968 https://doi.org/10.1063/1.1656022
  10. G.Vincent, A. Chantre, D. Bois, 'Electric field effect on the thermal emissions of traps in semiconductor junctions,' J. Appl. Phys., Vol. 50, pp. 5484-5487, Aug.1979 https://doi.org/10.1063/1.326601
  11. M.J.J.Theunissen, and F. J. List, 'Analusis of The Soft Reverse Characteristics of n+/p Drain Diodes,' Solid-State Electron, Vol. 28, No. 5, pp. 417-425, 1985 https://doi.org/10.1016/0038-1101(85)90102-9
  12. S.M. Sze, Physics of Semiconductor Devices, 2nd ed. New York: Wiley, 1981
  13. S.M. Sze, Modern Semiconductor Device Physics, New York: Wiley, 1998