Experimental Observation of Instability of Supersonic Submerged Jets

수중초음속제트의 불안정성에 대한 실험적 고찰

  • Published : 2002.06.01

Abstract

An experimental investigation on the structure and dynamic behavior of two dimensional over-expanded air jets exiting into water was carried out. The hish speed digital video imaging and static pressure distribution measurement were made to characterize the structure and time-dependant behavior of the jets. Mach number at the jet exit was 2.0 and was slightly less than the value predicted by the ideal nozzle calculation. Variance of jet spreading angle at different stagnation condition was measured as a function of mass flow rate. Periodic nature of the air jet distortion in water was observed and the frequency of the repetition was approximately 5-6 Hz for all cases tested. Three characteristic length scales were defined to characterize jet structure. $L_1$, maximum width of the plume when the periodic instability occurs, $L_2$, width of the jet where secondary reverse flow entrained jet flow and $L_3$, distance from the jet exit to the location where entrainment of the secondary reverse flow occurs. The ratio of $L_1$ and $L_2$ decreased with increasing stagnation pressure, i.e. mass flow rate. $L_3$ increased with increasing stagnation pressure. The temporal behavior of static pressure measurements also showed peak around frequency of 5, which corresponds the frequency obtained by visual measurements

2차원 수중 초음속 제트의 구조 및 유동 불안정성에 대한 실험적 연구를 수행하였다. 제트의 구조 및 시간에 따른 변화를 관찰하기 위하여 고속 디지털 카메라 촬영과 정압을 측정하였다. 공기 유량의 변화에 따른 제트의 구조를 초고속 촬영하여 이로부터 얻어진 장면에서 확산각을 구했다. 일련의 제트의 주기적인 특성에 따른 구조를 관찰하였고 불안정성의 초당 주기 발생 횟수가 5-6회 정도로 측정되었다. 세 가지 특성 길이 $L_1$, $L_2$, $L_3$를 정의하였다. $L_1$은 불안정적 주기가 발생할 경우 최대제트의 폭 스케일, $L_2$는 2차적인 유동이 유입되는 곳의 제트의 폭 스케일, $L_3$는 노즐 출구로부터 2차적으로 유도된 유동이 유임되는 곳까지의 길이다. $L_1$/$L_2$는 전압 즉, 탱크 압력이 증가함에 따라 감소하는 경향성을 가지고 있고 $L_3$는 전압이 증가함에 따라 증가하는 경향성을 띄었다. 시간에 따른 정압 변화를 측정하였으며 FFT결과를 통해서 불안정성으로 인해 발생하는 주파수와 유사한 값인 5Hz에서 고유진동이 발생하는 것을 확인하였다.

Keywords

References

  1. T.R Ogden, L.A Panrell, 'Shear Low control of Gas Jets In Liquids', AIAA 92-3139 (1992)
  2. E. Loth, 'Study of Plane Underexpanded Air Jets in Water', AIAA 89-1798(1989)
  3. K.J. Wilson, E. Gutmark, 'Supersonic Submerged Heated Jets', AIAA 92-3138(1992)
  4. V.A. Surin, V.N Evchenko, 'Propagation of a Gas Jet in a Liquid', J. Engng. Physics, 45, 1091(1983) https://doi.org/10.1007/BF00827076
  5. A.A Townsend, 'Mechanism of penetration of free Turbulent Jets,' Mechanics, Periodical Collection of Translations, NO. 4, 61-90 (1968)
  6. Nikolas E. Kotsovinos, 'A note on the spreading rate and virtual origin of a plane turbulent Jet', J. Fluid Mech, Vol.77, part 2, pp. 305(1975) https://doi.org/10.1017/S0022112076002127
  7. James J. Flora, 'Virtual origins of a Free Plane Turbulent Jet', AIAA Vol.7, No,12
  8. Marc A. Kolpin, 'The flow in the mixing region of a Jet', Fluid Mech. 18(1963)
  9. E. Loth, G.M. Faeth, 'Structure of Underexpanded Round Air Jets Submerged in Water', Int. J. Multiphase Flow Vol.15, No.4, pp. 589-603(1988) https://doi.org/10.1016/0301-9322(89)90055-4
  10. A.H. Nielwen, X. He, 'Vortex merging and spectral cascade in tow-dimensional flows', Physics of Fluid, Vol.8, No.9, pp. 2263-2265(1996) https://doi.org/10.1063/1.869027
  11. B.K. Hodge, Keith Koenig, 'Compressible fluid dynamics', Prentice-Hall Inc, (1995)