ON WEYL SPECTRA OF ALGEBRAICALLY TOTALLY-PARANORMAL OPERATORS

JIN CHUN KIM

Dedicated to Professor Yong Tae Kim on his 65th birthday

Abstract. In this paper we show that Weyl’s theorem holds for \(f(T) \) when an Hilbert space operator \(T \) is “algebraically totally-paranormal” and \(f \) is any analytic function on an open neighborhood of the spectrum of \(T \).

1. Introduction

Throughout this paper let \(\mathcal{L}(\mathcal{H}) \) denote the algebra of bounded linear operators acting on an infinite dimensional Hilbert space \(\mathcal{H} \). If \(T \in \mathcal{L}(\mathcal{H}) \) write \(N(T) \) and \(R(T) \) for the null space and range of \(T \); \(\sigma(T) \) for the spectrum of \(T \); \(\pi_0(T) \) for the set of eigenvalues of \(T \); \(\pi_{00}(T) \) for the isolated points of \(\sigma(T) \) which are eigenvalues of finite multiplicity. Recall ([5], [7]) that an operator \(T \in \mathcal{L}(\mathcal{H}) \) is called Fredholm if it has closed range with finite dimensional null space and its range of finite co-dimension. The index of a Fredholm operator \(T \in \mathcal{L}(\mathcal{H}) \) is given by

\[
\text{ind}(T) = \dim N(T) - \dim R(T) \uparrow \quad (= \dim N(T) - \dim N(T^*))
\]

An operator \(T \in \mathcal{L}(\mathcal{H}) \) is called Weyl if it is Fredholm of index zero. An operator \(T \in \mathcal{L}(\mathcal{H}) \) is called Browder if it is Fredholm “of finite ascent and descent”: equivalently, if \(T \) is Fredholm and \(T - \lambda I \) is invertible for sufficiently small \(\lambda \neq 0 \) in \(\mathbb{C} \). The essential spectrum \(\sigma_e(T) \), the

Received January 20, 2002.
2000 Mathematics Subject Classification: Primary 47A53; Secondary 47B20.
Key words and phrases: Weyl’s theorem, algebraically totally-paranormal operators.
Weyl spectrum $\omega(T)$ and the Browder spectrum $\sigma_b(T)$ of $T \in \mathcal{L}(\mathcal{H})$ are defined by

$$
\sigma_c(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \text{ is not Fredholm} \},
$$

$$
\omega(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \text{ is not Weyl} \},
$$

$$
\sigma_b(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \text{ is not Browder} \},
$$

$$
\sigma_c(T) \subseteq \omega(T) \subseteq \sigma_b(T) = \sigma_c(T) \cup \text{acc} \sigma(T),
$$

where we write $\text{acc} \mathbf{K}$ for the accumulation points of $\mathbf{K} \subseteq \mathbb{C}$. Following Coburn ([1]) we say that Weyl’s theorem holds for $T \in \mathcal{L}(\mathcal{H})$ if there is equality

$$
\sigma(T) \setminus \omega(T) = \pi_{00}(T).
$$

An operator $T \in \mathcal{L}(\mathcal{H})$ is called *isoloid* if every isolated point of $\sigma(T)$ is an eigenvalue of T. Recall ([8]) that an operator $T \in \mathcal{L}(\mathcal{H})$ is said to be *totally-paranormal* if

$$
||(T - \lambda)x||^2 \leq ||(T - \lambda)^2 x|| ||x|| \text{ for all } x \in \mathcal{H} \text{ and } \lambda \in \mathbb{C}.
$$

We shall say that the operator $T \in \mathcal{L}(\mathcal{H})$ is *algebraically totally-paranormal* if there exists a nonconstant complex polynomial p such that $p(T)$ is totally-paranormal. Evidently,

$$
\{ \text{hyponormal operators} \} \subseteq \{ \text{totally-paranormal operators} \}
$$

and

$$
\{ \text{algebraically hyponormal operators} \} \subseteq \{ \text{algebraically totally-paranormal operators} \}.
$$

From well-known facts (cf. [8]) of totally-paranormal operators we easily see that

(a) If $T \in \mathcal{L}(\mathcal{H})$ is algebraically totally-paranormal, then so is $T - \lambda I$ for each $\lambda \in \mathbb{C}$.

(b) If $T \in \mathcal{L}(\mathcal{H})$ is algebraically totally-paranormal and $\mathcal{M} \subseteq \mathcal{H}$ is invariant under T, then $T|\mathcal{M}$ is algebraically totally-paranormal.

(c) Unitary equivalence preserves algebraical totally-paranormality.

In [4] Han and Lee showed that Weyl’s theorem holds for $f(T)$ when T is an algebraically hyponormal operator and f is an analytic function on an open neighborhood of $\sigma(T)$.

In this paper we extend this result to algebraically totally-paranormal operators: our proof however differs from the correspondence in [4], in that we employ techniques from local spectral theory.

The following is our main result.
THEOREM. If $T \in \mathcal{L}(\mathcal{H})$ is algebraically totally-paranormal, then for every $f \in H(\sigma(T))$, Weyl's theorem holds for $f(T)$, where $H(\sigma(T))$ denotes the set of analytic functions on an open neighborhood of $\sigma(T)$.

2. Proofs

The following two lemmas give important and essential facts for algebraically totally-paranormal operators but its proofs are routine and similar to that of Han and Lee ([4]). Thus we shall just state them without proofs.

The following result is an extension of [4, Lemma 1] to algebraically totally-paranormal operators.

Lemma 1. Suppose $T \in \mathcal{L}(\mathcal{H})$.
(i) If T is algebraically totally-paranormal and quasinilpotent, then T is nilpotent.
(ii) If T is algebraically totally-paranormal, then T is isoloid.
(iii) If T is algebraically totally-paranormal, then T has finite ascent.

The following result is an extension of [4, Theorem 3] to algebraically totally-paranormal operators.

Lemma 2. If $T \in \mathcal{L}(\mathcal{H})$ is algebraically totally-paranormal, then

$$\omega(f(T)) = f(\omega(T)) \quad \text{for every } f \in H(\sigma(T)).$$

To state next lemma we need some notions from local spectral theory. We say that $T \in \mathcal{L}(\mathcal{H})$ has the single valued extension property (SVEP) if there is implication, for arbitrary open sets $U \subseteq \mathbb{C}$ and holomorphic functions $f : U \to \mathcal{H}$,

$$(T - zI)f(z) = 0 \text{ on } U \implies f(z) = 0 \text{ on } U.$$

If this holds for a neighborhood U of $\lambda \in \mathbb{C}$ we say that T has the SVEP at λ.

We introduce two important subsets of \mathcal{H}. If $T \in \mathcal{L}(\mathcal{H})$ and F is a closed set in \mathbb{C}, we define

$$\mathcal{H}_T(F) = \{x \in \mathcal{H} : \text{there exists an analytic } \mathcal{H}\text{-valued function } f : \mathbb{C} \setminus F \to \mathcal{H} \text{ such that } (T - \lambda)f(\lambda) = x\}.$$
Then $H_T(F)$ is said to be the spectral manifold of T. If T has the SVEP, then the above definition is identical with $H_T(F) = \{ x \in H : \sigma_T(x) \subseteq F \}$, where $\sigma_T(x)$ is the local spectrum of T at x. (see [2], [3], [8], [9] for details)

Let $H_o(T) = \{ x \in H : \| T^n x \| \rightarrow 0 \}$. If $H_o(T) = H$, then T is a quasinilpotent operator on H ([2, p.28. Lemma]). Now we are ready for the following result.

Lemma 3. Weyl's theorem holds for every algebraically totally-paranormal operator.

Proof. Suppose $p(T)$ is totally-paranormal for some nonconstant polynomial p. We first prove that $\pi_{00}(T) \subseteq \sigma(T) \setminus \omega(T)$. Without loss of generality, it suffices to show that

$$0 \in \pi_{00}(T) \implies T \text{ is Weyl but not invertible.}$$

Suppose $0 \in \pi_{00}(T)$. Since $0 \in \text{iso}(T)$, we can consider the Riesz spectral projection P_0 with respect to 0 ([7, Theorem 49.1; Proposition 49.1]) such that

$$R(P_0) = H_o(T), \quad (T)|_{N(P_0)} \text{ is invertible, and } H = R(P_0) \oplus N(P_0).$$

It is well known ([8, Proposition 1.8]) that if T has finite ascent, then it has the SVEP at 0. It is well known ([8, Corollary 2.4]) that if T has the SVEP at 0, then

$$H_T(\{0\}) = H_o(T).$$

Thus we have

$$R(P_0) = H_o(T) = H_T(\{0\}).$$

By hypothesis $R(T)$ is closed and $0 \in \pi_0(T)$, and so T is semi-Fredholm. Then since $H_T(\{0\})$ is closed, we have by [9, Theorem 2]

$$R(P_0) = H_T(\{0\}) \text{ is finite dimensional.}$$

Thus the restrictions of T to reducing subsets $R(P_0)$ and $N(P_0)$ are finite dimensional and invertible operators, respectively. So we can see that T is Weyl but not invertible. Hence we have that $\pi_{00}(T) \subseteq \sigma(T) \setminus \omega(T)$.

For the reverse inclusion, suppose $0 \in \sigma(T) \setminus \omega(T)$. Thus T is Weyl. Since T has a finite ascent, T has also a finite descent by [10, Theorem 1(4)]. So T is Weyl of finite ascent and descent, and then it is Browder. Therefore $0 \in \pi_{00}(T)$. This completes the proof. \square
Now we conclude with the proof of Theorem.

Proof of Theorem. Remembering [12, Lemma] that if T is isoloid, then

$$f(\sigma(T) \setminus \pi_{00}(T)) = \sigma(f(T)) \setminus \pi_{00}(f(T))$$

for every $f \in H(\sigma(T))$; it follows from Lemma 1 (ii), Lemma 2 and Lemma 3 that

$$\sigma(f(T)) \setminus \pi_{00}(f(T)) = f(\sigma(T) \setminus \pi_{00}(T)) = f(\omega(T)) = \omega(f(T)),$$

which implies that Weyl’s theorem holds for $f(T)$. □

References