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A FREQUENCY-DOMAIN METHOD FOR FINITE
ELEMENT SOLUTIONS OF PARABOLIC PROBLEMS

CHANG-OcCK LEE, JONGWOO LEE, AND DONGWOO SHEEN

ABSTRACT. We introduce and analyze a frequency-domain method
for parabolic partial differential equations. The method is nat-
urally parallelizable. After taking the Fourier transformation of
given equations in the space-time domain into the space-frequency
domain, we propose to solve an indefinite, complex elliptic problem
for each frequency. Fourier inversion will then recover the solu-
tion in the space-time domain. Existence and uniqueness as well
as error estimates are given. Fourier invertibility is also examined.
Numerical experiments are presented.

1. Introduction

Let Q be an open bounded Lipschitz domain in RV, N = 2,3, with
the I' = 8Q. Set J = [0,00). We are interested in a parallel numerical
method for the following parabolic problem:

(1.1a) Bus —V - (aVu)=f, QxJ,
(1.1b) u=0, T xJ
(1.1c) u(z,0)=0, x€Q,

where 3 € L°°(Q) and o € WH°(Q) are defined on {2, satisfying 0, <
B < B a, <a<a* |Val <a*, with positive constants i, 5%, a., a*.

The most popular strategy to obtain numerical solutions of (1.1) may
be to apply to the Problem (1.1) marching algorithms such as backward-
Euler and Crank-Nicolson methods. Such traditional methods have
proven to solve many practical problems effectively. These schemes,
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using the solutions at the previous time steps, solve elliptic problems
in order to obtain the solutions at the current step. Most parallel al-
gorithms are restricted to solving these elliptic systems in parallel; for
example, domain decomposition methods are the most successful such
methods. One of disadvantages of such approaches seems to arise from
the nontriviality and expenses in reducing communication costs among
Processors.

This paper investigates an alternative method in order to reduce com-
munication costs significantly by taking the Fourier transformation in
the time variable of Problem (1.1).

Recall that the Fourier transform v(-,w) of a function v(:,¢) in time
is defined by

oo .

B w) = / o(-, t)e= it dt
—0o0

while the Fourier inversion formula is given by

1 * iwt
v(-,t) (-, w)e*tdw.

Note that if v(x,t) is a real function, its Fourier transform satisfies the
conjugate relation ¥(z, —w) = ¥(z,w), w € R, from which the Fourier
inversion formula takes the form

1 & ;
(1.2) vz, t) = ;Re/ (e, w)e™ dw.
0

By extending f and u by zero to t < 0, the space-time formulation of
the equations (1.1) is transformed to a space-frequency formulation by
the Fourier transformation of (1.1) in time. Then the following set of
elliptic problems is obtained: for w € (0, 00), find & = u(-,w) such that

(1.3a) whi — V- (aVi)=f, ze,
(1.3b) u=0, zel.
Then u(-,t) is obtained by the formula (1.2).

In practice, the integral in (1.2) is approximated by a suitable quad-
rature with discrete

{W1,WQ,LU3,...}C (0,00),

and Problems (1.3) are solved for these w;’s by finite element or finite
difference methods. Of primary interest is that Problem (1.3) for any
w; is independent of other wy’s, which theorizes our parallel method to
solve the set of elliptic problems in a naturally parallel manner without
any data communication.
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The above parallel procedure has been already applied to solve wave
propagation problems with absorbing boundary conditions [7, 8, 10]. Re-
cently this frequency-domain method was applied to solve a parabolic
problem with Robin boundary condition [15], which dealt with paral-
lelization of the method and simulated a model problem using an MIMD
machine. See also [14] for an analysis of a linearized Navier-Stokes equa-
tions. See also [18] for different parallel algorithmic approaches for par-
abolic problems by using the Laplace transformation.

Practically the source terms f in (1.1) are given only up to finite time
intervals (0,7). In order to apply the frequency domain method, the
source terms should be extended to the infinite interval (0, 00). The cur-
rent paper presents an analysis for the Problem (1.1) with least squares
approximations of source terms so that their Fourier transformations are
well-defined.

This paper is organized as follows. In §2, we show that the equa-
tion (1.3) has the unique solution %(-,w) for w > 0, and regularity and
stability results are proved for such solutions. In §3 we first treat a finite
element procedure for (1.3) depending on w and derive error estimates
for the procedure. We then derive a full error estimate for solving (1.1)
via the inverse Fourier transformation. We approximate source func-
tions by smoothly decaying functions in §4. Finally in §5 some results
from numerical experiments are given.

2. Continuous problems

2.1. Notations and variational formulation

All functions are assumed to have values in the complex field C. But,
they are considered in the real field R for the time-dependent problems.
Standard notations for function spaces and their norms will be used in
this paper. Let L?(2) be the space of square integrable functions on
Q. The corresponding inner product and norm will be denoted by (-, -)
and || - ||, respectively. Let H™ (), for nonnegative integer m, denote
the usual Sobolev spaces with norms || - ||, and HF*(€2) the completion
of C§°(Q) in the norm of H™(Q); see [1, 6] for more details of function
spaces and related norms.

Define the sesquilinear form a,(-,-) : H3(2) x H}(Q) — C by

a, (u,v) = iw (Bu,v) + (aVu, Vv), u,v € HY(Q).
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A wariational formulation of Problem (1.3) is then to find u(-,w) €
H} () for given f € H™(£2) such that

(2.1) a,(@,v) = (f,v), ve HYQ),

where (-,-) denotes the duality pairing between H~1(Q) and H}(Q).

2.2. Uniqueness and existence

From the definition of a,(-,-) and Poincaré lemma,
(22)  |aw(@,@)| > [Re ay(,3)| = ||VaVa|® > Clulf},

where C' > 0 depends on only Q and a.. Thus, a.(-,-) is coercive. More-
over, from (2.1) with v = @ and (2.2) it follows that ||ulj; < C|Ifll-1.
Also note that for @, 7 € H} (),

law(@,9)] < wB*[[E] 9] + o™ Vall| Vo)
(2.3)
< CQA 4wl

where C depends on only Q, 8, and o*. Thus, a,(:,-) is continuous.
An application of the Lax-Milgram lemma [6, 17] gives the following
uniqueness and existence result:

THEOREM 2.1. Suppose that § is a bounded Lipschitz domain in
RN, N = 2,3, with the boundary T'. Assume that f(~,w) e H71(Q).
Then for each w, the equation (2.1) has a unique solution u(:,w) €
HE (). Moreover,

(2.4) @, w)lh < ClIfCw)ll-1,
with C independent of w.

REMARK 2.1. The estimate (2.2) implies that the coercivity is inde-
pendent of w, and (2.3) implies ||ay|] < C(1 +w).

2.3. Stability and regularity

Assume that €2 is a convex polygon in R? or a C?>~domain in RN, N =
9,3, and that f € L2(€}). We begin by multiplying (1.3a) by @, and
integrating over ). Then an integration by parts yields: iw (84, u) +
(aVu,Vau) = (f,4), from which the real and imaginary parts give

ese)  whlal <o||VAa| =m o < 17l
(2.5b) o | Va|? < VeVl = Re (f,2) < || /]| 2.
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From (2.5a) it follows that

1 ~
_ al| < .
(2.6) [l < wﬁ*llfll
Combining (2.5b) and (2.6) yields [|Va? < L|IfllIal < A lIFII%

and thus, ||V < \/w;—a”ﬂ‘ Summarizing the above estimates, one

has the following lemma.

LeEMMA 2.1. If4(-,w) € H3(S2) is a solution of Problem (2.1), then

(2.72) fat.w)l < Cmin{1, L} IFC.)
(2.70) IVa(w) < Cminf1, = Y170
(2.7¢) )l < Cmin{1,—= )l

Let us now turn to get an H%(Q)-estimate for the solution @ of (1.3).
Recall the following [12]:

AT ST ~2 o~ 2 1
(2.8) Z”Bm‘axj” < C|IATIR, e HXQ) N HLQ).
ij=1 '

We then have the following lemma.

LEMMA 2.2. Assume that w is given and f(-,w) € L?(Q). If u(-,w) €
HZ(Q) N H}(Q) be the solution of (2.1), then there exists a positive
constant C such that

o~

[a(,w)llz < CIFC, W),
where C > 0 is independent of w.

Proof. Using (2.8), (1.3), (2.7a) and (2.7b), the following estimate is
obtained:

[al: < cladl < = |wsa-va- va- 7|
< c{wplall+ 17 + Ivallval}
< CIfl-

This completes the proof. O
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In particular, the estimate of Lemma 2.2 shows the existence of © €
H(Q) N H}Q) if f € L*(Q) by the method of Galerkin approximation
[16].

We summarize the above results in the following theorem.

THEOREM 2.2. Suppose (1 is a convex polygon in R? or a C?-domain
in RV N = 2,3. Then for any f(-,w) € L?(Q), there exists a unique
solution u(-,w) € H}(Q) N H%(Q) with

@, willz < CIFC W

REMARK 2.2. The estimate in Lemma 2.2 means that the elliptic reg-
ularity coefficient C for Problem (1.1) corresponding to w is not singular
as w tends to zero or co. This comes from the nature of parabolicity of
(1.1), which differs from that of hyperbolicity of wave equations resulting
into Helmholtz equations [10].

As immediate results of Theorems 2.1 and 2.2, we have the followings.

o~

COROLLARY 2.1. If || f(-,w)||-;1 is integrable over the frequency do-

main R with respect to w, then there exist Fourier inverses of u(-,w) and
o0

“1<i<N.
Z;

—~

COROLLARY 2.2. If||f(-,w)]| is integrable over the frequency domain
R with respect to w, then there exist Fourier inverses of U(-,w), 8—5— and
i
0%*u
¥ 1<4,j<N.
dzor; = Y=

3. Finite element approximation

3.1. Finite element method for a single frequency

Let h > 0 be a discretization parameter tending to zero and V,, C
H}(9) be a finite element space. Then the discrete problem correspond-

ing to (2.1) reads: Find U € V}, such that for a given fe H™(Q),
(3.1) au(@,v) = (f,v), vEW

We shall assume that V}, satisfy the following property: There exist a
positive constant C and an operator 7y, : H2(Q2) — V}, independent of
h such that

(32) v —mpollx < Ch*F|v]l2, ve HX(Q),k=0,1.
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For such finite element spaces, see, for example, {2, 3, 4, 5, 11, 13]. Let
Up(-,w) € Vi be the Galerkin approximation to u(-,w) of (2.1). Then
Up(-,w) exists uniquely due to Theorem 2.1. Furthermore we have the
following error estimates.

THEOREM 3.1. Suppose that {1 is a convex polygon in R? or a C?%-
domain in RV, N = 2,3, and f(-,w) € L?(Q). Then the approximate
solution up(-,w) of (3.1) to the solution U(-,w) of (2.1) for each w sat-
isfies that

(332)  l2(w) = (@) < O+ @RIFCW)

(3.3b) I, w) = An(w)ll < C+w)*h?[f (W)
Proof. From (2.1) and (3.1), we have the error equation:
aw(a"ﬁahav) :()a v E Vh-

By coercivity and continuity of a,, and the above error equation, for
arbitrary x € V4,
@ — Gnl|? < Caw (@ — Un, 4 — T)
= C {au(U — Un, U — X) + au (T — Un, x — Up)}
= Ca,(U—Up,u—x)
< C(l+w)lu—apf |z — xl-
Then by using (3.2) and Theorem 2.2, an appropriate choice of x yields
(3.3a).

For a proof of the second inequality the usual duality argument will
be used. Let z € H3(Q) N HE(Q) be the solution of

aw(z,v) = (U — Up,v), v € H(Q).

Then, by Lemma 2.2, we have ||z||2 < C||@ ~ uy||, from which, using the
continuity of a,, (3.2), and (3.3a), we have
i —- Gn||? = aw(z, @ — Gp)
= ay(z — Thz, U — Up)
< C(1+w)|@ - anlls |z — mell
SO+ w)hla —unll llzll2
< (1 + w2 f)l 1@ - il

This completes the proof. O
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2. Full error estimate

Following [8], we will give the full estimate of errors introduced by
the truncation and discretization of a quadrature of the inverse Fourier
transform, and caused by finite element approximations. The following
lemma will be useful.

LEMMA 3.1. Let T > 0 be given and suppose that

T
/ 28] £, )] dt < oo,
0

k = 0,1,2,...,m for some nonnegative integer m. Let u be the so-
lution of Problem (1.1). Then we have the following estimates: for
k=0,1,2,...,m

(3.4) /ut’“ nldt<cz / 23 7, 1) dt.

Proof. Multiply (1.1a) by u(-,t) to get, for € > 0,

92182, 1 + 1 20ul, Ol < L7 + elful- .

By integrating this inequality with respect to ¢ over [0,T7], we get

1 1724 2 Tal/zu. 2 1 T A2 . Tu_ 2
S0 DI + [t i< [T o [ ol

An application of Poincaré inequality and a choice of a sufficiently small
€ > 0 lead to

T T
(3.5) HU(-,T)H2+/O IVu(, HlPdt < C/O I£C, 1)1,

This yields (3.4) for k = 0.
Now, observe that tu(-,t) satisfies

(Btu): — V - (aVitu) = tf + Bu,
and repeat the above argument to arrive at
T T
ITu(, T)I? + / 2 Vu(, 1)|*dt < C / (L+FC 0t
0 0

where we used the estimate (3.5). This gives (3.4) for k = 1. An
inductive argument for £ > 1 completes the proof. ]
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We consider restricted sources such that |f(, w)| are square integrable
with respect to w and thus negligible for large |w|. We then choose a

o~

sufficiently large w* > 0 so that both u(-,w) and f(-,w) are negligible
for |w| > w*. Also recall that the computation of u(-,w) for w < 0 is
not necessary. Let IV, be a positive integer and define the discretization
parameter Aw of the frequency domain by the formula Aw = w*/N,,,
and introduce the mesh points w;_1 = (5 — %)Aw,j =1,...,N, on the

interval (0,w*). Due to (1.2), the time-domain solution u of (1.1) will
then be approximated by

&

up(z, wj_l/Q)e”“’i—l/? Aw.
1

h
uw*,Aw(m’ t) =

3|

<.
Il

We now turn to estimate the convergence of uﬁ*, Aul 1) to u(-,t) for a
fixed time t > 0. Setting

*

1 /v . ;
Uy (2, 1) = ;/ i(z, w)e™ dw
0

and

=

1 <5 .
U Aw(E,t) = - u(m,wj_l/z)ezt“’j—l/ZAw,
=1

o
Il

we have

(u(m, t) — Uw~ (wv t)) + (uw* (‘B, t) - uw",Aw(m7 t))
+ (uw*,Au(m,t) - uﬁ*'Aw(m,t))
Eqi(z,t) + Eo(x,t) + Es(z,t).

u(;c, t)— uZ*,Au(xv t)

(3.6)

Il

First, by Minkowski’s inequality for integral and from the inequality
(2.7b) in Lemma 2:2 we get

~
"y

BN NEL I S C [spe il

Vﬂ(, UU) Hdw S c fw>w*

Thus

I1EL(-,&)||]1 — 0 as w* — oo.
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We also have

2

][Eg(,i)“f < / Vi(, t)e“"tda./ ZVu(:z: wj_ 1/2) eti-1/2 Ayl dx
=1
iwt 2
< C’(Aw)4/ B(l;c,z_w)e_) dr
2 w L2(0,w*) \
< v — 290, -
< C(Aw) /H ~EVu(w,) + 210Vu(@,) - EVa@ )|,
(3.8) .
< o [ {IEVE )
+ t2|]m(m,.)u2mmm)+t4||va(m,.)g|g2(m)}dz
< @) {1l 2 o 0eriincan

2 2 4 2
+ tltullie 0,00y 1)) T ||”||L2((o,oo>;H1(n))}'
Assume further that, for k =0,1,2,

o0
/ S F (8P ds < oo,
0

Then, using Lemma 3.1, we see that

1/2
1B2(, 1)l < C(Aw) Zt2 ’“Z{/ Ca)lPds| o

as Aw — 0.
Finally, from Theorem 3.1 and Theorem 2.2, we have

1B (-, 8)]l c

IA

N,
1< " F» itw
=Y (Van(wjm12) = Vil wjo1p0)) € ””mw”

i=1

IA

CA“’Z “vah('»wrl/?) - Vﬁ('»wj—w)“
(3.9 =1
NW o~
< ChAwD (1+wj_12) f wim1y2)l
=1

Ch”(l +w) F,w)

IA

L2((0,050):L2(52))
Thus, if we assume that

o ~ 1/2
L2,((0,00);L2(%2)) [/o IC VG w)ll

|+ w)Fw)|

we have that

|Es(-,t)|}s — O as h—0.



Frequency—domain method for parabolic problems 599

Combining the estimates (3.7), (3.8), and (3.9), and using Lemma 3.1,
we have the full error estimate.

THEOREM 3.2. Suppose that Q) is as in Theorem 3.1. Assume that
fork=0,1,2

/ 7 )] ds < oo,
[\)

and

-~

]](1 +w) Fi,w)

LZ((0,00);L%(2)) =

Then ug*y (1) converges to u(-,t) for a fixed time t; moreover, for
t >0,

u( ) — uhe au( Bl < G /

w>w*

10 Aw)@t“ZU £ )Hst}W

+03h]](1 +w) flw)

3—?(»@” du

L2((0,00)5L2(52))

with C;,j = 1,2, 3, dependent only on the domain  and the coefficients
8 and «.

Similarly, if we estimate || Ey(-,t)||, |E2(,t)|l, and ||E3(:,¢)}| in (3.6),
using (2.7a) instead of (2.7b) for the first error term || F1 (-, t)|, and using
(3.3b) instead of (3.3a) for the third error term ||E3(:,t)||, we obtain the
following theorem.

THEOREM 3.3. Suppose that Q is as in Theorem 3.1. Assume that
fork=0,1,2

/0 £ 8)[2 ds < oo,

and

1+ w)? Fow)

< 00
L2 ((0,00);,L7(52))
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Then u”
t>0,

e aw(rt) converges to u(:,t) for a fixed time t; moreover, for

%f('sw)

lu(,8) = ute 4u(, 1)l < Gy /w » } o

+Ca(Aw) th ’“ZU s7IIf(: s)!lzds]l/2

+C3h? ”(1 +w)? F,w)

L2((0,005,L%(2)
with Cj,j = 1,2, 3, dependent only on the domain ) and the coefficients
B and o.

4. Source functions and least square approximation

Assume first that the source f(z,t) is given in the form f(z,t) =
#(x)g(t). In practice g(t) is not known for all t € (0,00). We also
assume that g(t) € L2(0,T) for some T < oo. We thus have to extend
g(¢) to (0, 00) so that the Fourier transformation of the extended source
function g(t) can be calculated effectively and efficiently.

The following is a simple application of Weierstrass Theorem.

LEMMA 4.1. Let ¢ be a positive number. Then the following set S is
dense in L*(0,T).

S=Span{tke“6t|k:0,1,..., te (O,T)}.

Let g,(¢) € S be a least square approximation to g(t) in (0,T] such
that [g(t) — gn(t)ll 120y < € where € > 0 is a prescribed tolerance.
Write such a g, in the form

n
gn(t) = Z atie
j=0

and extend g, to (T, 00). We now approximate the solution to our Prob-
lem (1.1) with f(z,t) = ¢(x)g,(t) for an appropriate n > 0 instead of
flz:1).

Let u™(x,t) be the solution to (1.1) with f = f,(a,t). Due to the re-
lation (1.2) the time-domain solution u™(x,t) will then be approximated
by

ZhAw(a: t) = Zuh xT,w;_ 1/2)6”“’1 12 Aw.
] 1
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We now turn to estimate the L2-norm convergence of u" o Aw( t) to
u(+,t) for a fixed time t > 0. Setting

*

1 /¢ ~ ;
u(x,t) = —/ u"(z, w)e™ dw
0

™
and
n _1 & P _ it 172 A
Uigr Aw(T, 1) - ]zzzlu (az,wj_l/g)e i w,
we have
u(@,t) —ul o (@) = (u(@,t) - u(@,1) + (uP(x, 1) — ul (@, 1))

+ (U (2, 8) — ule pu(2,1))
n u™ h
+ (e aulat) — il p(2,1))
Under the same assumption as in Theorem 3.3, using the inequality
(3.5) and following the argument in Section 3.2, we have that for a fixed
t(0<t<T),
(-, 8) = ul A, (0 < Coll £, 8) = fals, s Lz(0.0):L202))

1~
+Cl/ —fn(-,w)‘ d
w>w*

(4.1) +Ch(Aw) ZtQ’“Z[/ s | fn (-, 8)|%ds

+C3h? H (14 w)? fn(-,w)‘

)

1/2

L2((0,50):L2(2)) |
with C},7 = 0,1,2,3, dependent only on the domain Q and the coeffi-
cients § and o.

Note that due to Theorem 3.3, §,(w) should decay faster than 1/w?
as w — oo and that

b ; k!
(4.2) / the=cte=wigs = (
0

L k=0,1,... 0.
¢+ iw)kt+1 o

So we take n > 3. If the source function needs to satisfy that g(0) = 0,
we can take g, (t) in the form

n
gn(t) =Y ajtle™, t e (0,00).
=3
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For a source function given by f(x,t) = ¢(x)g(t), we may choose
n > 3 in the inequality (4.1) so that

1£(8) = fulS)lzzoyezyy = llo(®)g(s) — (@)gn(8)l| 2((0.0:L2(2)
||¢”L2(Q) llg(s) — gH(S)HLQ((),t)

< lollz 9(s) = gn ()l L2(0.1)
< ¢ for some prescribed ¢.
Since
4.3 7 = s
(43) Gn(e) ]Z:; (¢ +iw)it!

we may control the second term of the right hand side of the inequality
(4.1) using the following.

1/\
/ w)[cau < ol [
w>w* w>w*

|a;15!
¢l L2 Z3/w>w W(Z + W2)TD/2 e

w
la;5!
”¢|IL Z ]+1] _7+1

i=3

n\"s

1
—g’;(w)’dw
w

IA

(4.4)

A

5. Numerical experiments

Numerical experiments were performed for Problem (1.1) with 8 =
a=1 Let @ = (0,1)2 in R? and J = (0,T), T = 1. The source
f(zx,t) = ¢(x)g(t) was chosen so that the analytic solution u to Problem
(1.1) is u(:v t) = sin(2rz)sin(3ry)h(t),x = (z,y) € Q,t € J, where
h(t) = 1+1oz ,

First we approximate g(t) by gn{t) = 2?23 a;t’e However we
can not take arbitrarily large n since the induced linear system may be
ill-conditioned.

We choose ¢ = 10 so that g,(t) does not grow too large in finite time.
To pick a reasonable n, we compared two values

(5.1) lg(t) — gn(®)l and [lg(t) — T(g,n,w", Aw)] ,
where

—ct

o
1_. .

gn JJJ 1/2) ztwj,uzsz/ _gn(w)ezwt dw,

0 %%}

N,
T(g,n,w", Aw) :Z
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3 . “g(t) _ T(g,n,w*,Aw)H *
9 1.150E-3 2.075E-3 | 1.147E-3 | 1.147E-3 | 120
10 1.005E-3 1.743E-3 | 1.002E-3 | 1.002E-3 | 125
11 7.949E-4 9.903E-3 | 7.908E-4 | 7.908E-4 | 132
12 6.584E-4 6.229E-2 | 6.540E-4 | 6.540E-4 | 138
13 6.593E-4 6.510E-2 | 6.549E-4 | 6.549E-4 | 138
TABLE 1. Relative |[g(t) — gn(t)|l, relative |[g(t) —
T(g,n,w*, Aw)||, and w*.
30 T T T T T T T
25 4
20 .
15 L -
10 F -
5r N
o 1 1. — | ). ) 1
0 0.5 1 1.5 2 25 3 35 4

FIGURE 1. Time Shape of Source Function g(¢) and
gn(t): ©’s represent the original source g(¢) and the solid
line represents the graph of a least square approximation
extended beyond [0, 1].

w* is an integer satisfying 7 (—J:llgl—(]u')’—l)m <107*in (4.4), and N, =

w*/Aw. Table 1 shows the values of (5.1) with various n and Aw.
It seems that eleven basis functions, i.e., 21113 a;jte” 10 and Aw =1
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N, = N, = 50 N, = N, — 100 N, = N, = 200
2.317E-3 (2.0865-3) | 6.727E-4 (3.002E-4) | 4.3935-4 (3.2005-4)
TABLE 2. Relative L2(J;L%(Q))-errors and relative
L?(2)-errors at time ¢ = 1 for the solution by Frequency—
Domain Method. The numbers in parentheses denote the

relative L2(Q)-errors at time t = 1.

time || Ny = N, =50 | N, = N, = 100 | N, = N, = 200
0.1 5.034E-3 5.700E-3 5.887E-3
0.2 1.334E-3 1.072E-3 1.299E-3
0.3 2.797E-3 1.215E-3 8.560E-4
0.4 1.931E-3 3.809E-4 4.082E4
0.5 2.610E-3 8.842E-4 4769E4
0.6 | 2197E-3 4.493E-4 1.399E-4
0.7 | 2416E-2 6.401E-4 1.984F-4
0.8 | 2.450E-3 6.606E-4 2.293E-4
0.9 2.269E-3 4.893E4 1.056E-4
1.0 | 2.086E-3 3.002E-4 3.209E-4

TABLE 3. Comparison of Relative L?(2)-Errors at time
t=0.1,0.2,...,1 for the solutions by Frequency—Domain
Method.

are reasonable choices. In Figure 1, ¢’s represent the original source
function g(t), and the solid line represents the graph of a least square
approximation extended smoothly beyond [0, 1].

We solved Problem (3.1) for w;_1/3,7 = 1,..., Ny. In the calculation
of finite element solutions N, x N, uniform triangular meshes were taken
for the triangulation of Q, and C? piecewise linear finite elements were
used. The resulting algebraic problems were solved by using a Gaussian
elimination type solver, Yale Sparse Matrix Package [9].

Table 2 shows the relative L2(J; L%(Q))-errors and the relative L2(Q)-
errors at time ¢t = 1. We observe that the errors decay, but not drasti-
cally, as the number, say N (= N,), of points in the space ) increases
because it reduces only the last part of (4.1).

We also present the relative L?(f2)-errors for each time step t =
0.1,0.2,...,1 for the cases N, = N, = 50,100,200 in Table 3. 1t is
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worthwhile to observe that the errors are up and down but do not in-
crease as time grows. This feature should be emphasized compared to
error behaviors for traditional solvers; as time increases, errors gener-
ated by traditional solvers in the space-time formulation, such as Crank-
Nicolson and backward-Euler methods, usually grow.

Among all the features mentioned above, the most favorable advan-

tage for our scheme lies in the natural parallelization when there are
given massively parallel processors.

(1]
(2l
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