$(\mathcal{T}_i, \mathcal{T}_j)$ -FUZZY α -(r, s)-SEMIOPEN SETS AND FUZZY PAIRWISE α -(r, s)-SEMICONTINUOUS MAPPINGS

Eun Pyo Lee

ABSTRACT. We introduce and investigate the concepts of (T_i, T_j) -fuzzy α -(r, s)-semiopen $(\alpha$ -(r, s)-semiclosed) sets and fuzzy pairwise α -(r, s)-semicontinuous mappings in smooth bitopological spaces.

1. Introduction

The concept of fuzzy sets was introduced by Zadeh [12] in his classical paper. Using the concept of fuzzy sets Chang [2] introduced fuzzy topological spaces and several other authors continued the investigation of such spaces. Chattopadhyay et al. [4] and Ramadan [8] introduced new definition of smooth topological spaces as a generalization of fuzzy topological spaces. Kandil [6] introduced and studied the notion of fuzzy bitopological spaces as a natural generalization of fuzzy topological spaces. Lee et al. [7] introduced the concept of smooth bitopological spaces as a generalization of smooth topological spaces and Kandil's fuzzy bitopological spaces.

In this paper, we introduce the concepts of $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy α -(r, s)-semiopen sets and fuzzy pairwise α -(r, s)-semicontinuous mappings in smooth bitopological spaces and then we investigate some of their characteristic properties.

2. Preliminaries

Let I be the closed unit interval [0,1] of the real line \mathbb{R} and let I_0 be the half open interval [0,1] of the real line \mathbb{R} . For a set X, I^X denotes

Received March 25, 2002.

²⁰⁰⁰ Mathematics Subject Classification: 54A40.

Key words and phrases: (T_i, T_j) -fuzzy α -(r, s)-semiopen sets, fuzzy pairwise α -(r, s)-semicontinuous mappings.

the collection of all mapping from X to I. A member μ of I^X is called a fuzzy set of X. By $\tilde{0}$ and $\tilde{1}$ we denote constant mappings on X with value 0and 1, respectively. For any $\mu \in I^X$, μ^c denotes the complement $\tilde{1} - \mu$. All other notations are the standard notations of fuzzy set theory.

A Chang's fuzzy topology on X [2] is a family T of fuzzy sets in X which satisfies the following properties:

- (1) $\tilde{0}, \tilde{1} \in T$.
- (2) If $\mu_1, \mu_2 \in T$ then $\mu_1 \wedge \mu_2 \in T$.
- (3) If $\mu_k \in T$ for all k, then $\bigvee \mu_k \in T$.

The pair (X, T) is called a *Chang's fuzzy topological space*. Members of T are called T-fuzzy open sets of X and their complements T-fuzzy closed sets of X.

A system (X, T_1, T_2) consisting of a set X with two Chang's fuzzy topologies T_1 and T_2 on X is called a Kandil's fuzzy bitopological space.

A smooth topology on X [4, 8] is a mapping $\mathcal{T}: I^X \to I$ which satisfies the following properties:

- (1) $\mathcal{T}(\tilde{0}) = \mathcal{T}(\tilde{1}) = 1$.
- (2) $\mathcal{T}(\mu_1 \wedge \mu_2) \geq \mathcal{T}(\mu_1) \wedge \mathcal{T}(\mu_2)$.
- (3) $\mathcal{T}(\bigvee \mu_k) \ge \bigwedge \mathcal{T}(\mu_k)$.

The pair (X, \mathcal{T}) is called a *smooth topological space*. For $r \in I_0$, we call μ a \mathcal{T} -fuzzy r-open set of X if $\mathcal{T}(\mu) \geq r$ and μ a \mathcal{T} -fuzzy r-closed set of X if $\mathcal{T}(\mu^c) \geq r$.

A system $(X, \mathcal{T}_1, \mathcal{T}_2)$ consisting of a set X with two smooth topologies \mathcal{T}_1 and \mathcal{T}_2 on X is called a *smooth bitopological space*. Throughout this paper the indices i, j take values in $\{1, 2\}$ and $i \neq j$.

Let (X, \mathcal{T}) be a smooth topological space. Then it is easy to see that for each $r \in I_0$, an r-cut

$$\mathcal{T}_r = \{ \mu \in I^X \mid \mathcal{T}(\mu) \ge r \}$$

is a Chang's fuzzy topology on X.

Let (X,T) be a Chang's fuzzy topological space and $r \in I_0$. Then the map $T^r: I^X \to I$ is defined by

$$T^{r}(\mu) = \begin{cases} 1 & \text{if } \mu = \tilde{0}, \tilde{1}, \\ r & \text{if } \mu \in T - \{\tilde{0}, \tilde{1}\}, \\ 0 & \text{otherwise} \end{cases}$$

becomes a smooth toplogy.

Hence, we obtain that if $(X, \mathcal{T}_1, \mathcal{T}_2)$ is a smooth bitopological space and $r, s \in I_0$, then $(X, (\mathcal{T}_1)_r, (\mathcal{T}_2)_s)$ is a Kandil's fuzzy bitopological space. Also, if $(X, \mathcal{T}_1, \mathcal{T}_2)$ is a Kandil's fuzzy bitopological space and $r, s \in I_0$, then $(X, (\mathcal{T}_1)^r, (\mathcal{T}_2)^s)$ is a smooth bitopological space.

DEFINITION 2.1 ([7]). Let (X, \mathcal{T}) be a smooth topological space. For each $r \in I_0$ and for each $\mu \in I^X$, the fuzzy r-closure is defined by

$$\mathcal{T}\text{-Cl}(\mu, r) = \bigwedge \{ \rho \in I^X \mid \mu \le \rho, \mathcal{T}(\rho^c) \ge r \}$$

and the fuzzy r-interior

$$\mathcal{T}$$
-Int $(\mu, r) = \bigvee \{ \rho \in I^X \mid \mu \ge \rho, \mathcal{T}(\rho) \ge r \}.$

THEOREM 2.2 ([7]). Let μ be a fuzzy set of a smooth topological space (X, \mathcal{T}) and let $r \in I_0$. Then we have:

- (1) \mathcal{T} -Int $(\mu, r)^c = \mathcal{T}$ -Cl (μ^c, r) .
- (2) \mathcal{T} -Cl $(\mu, r)^c = \mathcal{T}$ -Int (μ^c, r) .

DEFINITION 2.3 ([7]). Let μ be a fuzzy set of a smooth bitopological space $(X, \mathcal{T}_1, \mathcal{T}_2)$ and $r, s \in I_0$. Then μ is said to be

- (1) a (T_i, T_j) -fuzzy (r, s)-semiopen set if there is a T_i -fuzzy r-open set ρ in X such that $\rho \leq \mu \leq T_j$ -Cl (ρ, s) ,
- (2) a $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)-semiclosed set if there is a \mathcal{T}_i -fuzzy r-closed set ρ in X such that \mathcal{T}_i -Int $(\rho, s) \leq \mu \leq \rho$,
- (3) a $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)-preopen set if $\mu \leq \mathcal{T}_i$ -Int $(\mathcal{T}_i$ -Cl $(\mu, s), r)$,
- (4) a (T_i, T_j) -fuzzy (r, s)-preclosed set if T_i -Cl $(T_j$ -Int $(\mu, s), r) \leq \mu$.

DEFINITION 2.4 ([7]). Let $f:(X,\mathcal{T}_1,\mathcal{T}_2)\to (Y,\mathcal{U}_1,\mathcal{U}_2)$ be a mapping from a smooth bitopological space X to another smooth bitopological space Y and $r,s\in I_0$. Then f is said to be

- (1) a fuzzy pairwise (r,s)-continuous mapping if the induced mapping $f:(X,\mathcal{T}_1)\to (Y,\mathcal{U}_1)$ is a fuzzy r-continuous mapping and the induced mapping $f:(X,\mathcal{T}_2)\to (Y,\mathcal{U}_2)$ is a fuzzy s-continuous mapping,
- (2) a fuzzy pairwise (r,s)-semicontinuous mapping if $f^{-1}(\mu)$ is a $(\mathcal{T}_1,\mathcal{T}_2)$ -fuzzy (r,s)-semiopen set of X for each \mathcal{U}_1 -fuzzy r-open set μ of Y and $f^{-1}(\nu)$ is a $(\mathcal{T}_2,\mathcal{T}_1)$ -fuzzy (s,r)-semiopen set of X for each \mathcal{U}_2 -fuzzy s-open set ν of Y,

(3) a fuzzy pairwise (r, s)-precontinuous mapping if $f^{-1}(\mu)$ is a $(\mathcal{T}_1, \mathcal{T}_2)$ -fuzzy (r, s)-preopen set of X for each \mathcal{U}_1 -fuzzy r-open set μ of Y and $f^{-1}(\nu)$ is a $(\mathcal{T}_2, \mathcal{T}_1)$ -fuzzy (s, r)-preopen set of X for each \mathcal{U}_2 -fuzzy s-open set ν of Y.

3. $(\mathcal{T}_i, \mathcal{T}_i)$ -fuzzy α -(r, s)-semiopen sets

DEFINITION 3.1. Let μ be a fuzzy set of a smooth bitopological space $(X, \mathcal{T}_1, \mathcal{T}_2)$ and $r, s \in I_0$. Then μ is said to be

- (1) a $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy α -(r, s)-semiopen set if there is a \mathcal{T}_i -fuzzy r-open set ρ in X such that $\rho \leq \mu \leq \mathcal{T}_i$ -Int $(\mathcal{T}_j$ -Cl $(\rho, s), r)$,
- (2) a (T_i, T_j) -fuzzy α -(r, s)-semiclosed set if there is a T_i -fuzzy rclosed set ρ in X such that T_i -Cl $(T_i$ -Int $(\rho, s), r) \leq \mu \leq \rho$.

REMARK 3.2. It is clear that every \mathcal{T}_i -fuzzy r-open set is a $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy α -(r, s)-semiopen set and every $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy α -(r, s)-semiopen set is not only a $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)-semiopen set but also a $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)-preopen set. However, the following examples show that all of the converses need not be true.

EXAMPLE 3.3. Let $X = \{x, y\}$ and μ_1, μ_2, μ_3 and μ_4 be fuzzy sets of X defined as

$$\mu_1(x) = 0.3, \quad \mu_1(y) = 0.4;$$

 $\mu_2(x) = 0.8, \quad \mu_2(y) = 0.2;$

$$\mu_3(x) = 0.6, \quad \mu_3(y) = 0.9;$$

and

$$\mu_4(x) = 0.9, \quad \mu_4(y) = 0.4.$$

Define $\mathcal{T}_1: I^X \to I$ and $\mathcal{T}_2: I^X \to I$ by

$$\mathcal{T}_1(\mu) = \left\{ egin{array}{ll} 1 & ext{if} & \mu = ilde{0}, ilde{1}, \ rac{1}{2} & ext{if} & \mu = \mu_1, \ 0 & ext{otherwise}; \end{array}
ight.$$

and

$$\mathcal{T}_2(\mu) = \left\{ egin{array}{ll} 1 & ext{if} & \mu = ilde{0}, ilde{1}, \ rac{1}{3} & ext{if} & \mu = \mu_2, \ 0 & ext{otherwise}. \end{array}
ight.$$

Then clearly $(\mathcal{T}_1, \mathcal{T}_2)$ is a smooth bitopology on X. The fuzzy set μ_3 is $(\mathcal{T}_1, \mathcal{T}_2)$ -fuzzy α - $(\frac{1}{2}, \frac{1}{3})$ -semiopen set which is not a \mathcal{T}_1 -fuzzy $\frac{1}{2}$ -open set. Also μ_4 is a $(\mathcal{T}_2, \mathcal{T}_1)$ -fuzzy α - $(\frac{1}{3}, \frac{1}{2})$ -semiopen set which is not a \mathcal{T}_2 -fuzzy $\frac{1}{3}$ -open set.

EXAMPLE 3.4. Let $X=\{x,y\}$ and $\mu_1,\ \mu_2,\ \mu_3,\ \mu_4,\ \mu_5$ and μ_6 be fuzzy sets of X defined as

$$\mu_1(x) = 0.1, \quad \mu_1(y) = 0.7;$$
 $\mu_2(x) = 0.8, \quad \mu_2(y) = 0.2;$
 $\mu_3(x) = 0, \quad \mu_3(y) = 0.6;$
 $\mu_4(x) = 0.1, \quad \mu_4(y) = 0.8;$
 $\mu_5(x) = 0.5, \quad \mu_5(y) = 0.6;$

and

$$\mu_6(x) = 0.9, \quad \mu_6(y) = 0.2.$$

Define $\mathcal{T}_1: I^X \to I$ and $\mathcal{T}_2: I^X \to I$ by

$$\mathcal{T}_1(\mu) = \left\{ egin{array}{ll} 1 & ext{if} & \mu = ilde{0}, ilde{1}, \ rac{1}{2} & ext{if} & \mu = \mu_1, \ 0 & ext{otherwise}; \end{array}
ight.$$

and

$$\mathcal{T}_2(\mu) = \begin{cases} 1 & \text{if } \mu = \tilde{0}, \tilde{1}, \\ \frac{1}{3} & \text{if } \mu = \mu_2, \\ 0 & \text{otherwise.} \end{cases}$$

Then clearly $(\mathcal{T}_1, \mathcal{T}_2)$ is a smooth bitopology on X. The fuzzy set μ_3 is a $(\mathcal{T}_1, \mathcal{T}_2)$ -fuzzy $(\frac{1}{2}, \frac{1}{3})$ -preopen set which is not a $(\mathcal{T}_1, \mathcal{T}_2)$ -fuzzy α - $(\frac{1}{2}, \frac{1}{3})$ -semiopen set and μ_4 is a $(\mathcal{T}_1, \mathcal{T}_2)$ -fuzzy $(\frac{1}{2}, \frac{1}{3})$ -semiopen set which is not a $(\mathcal{T}_1, \mathcal{T}_2)$ -fuzzy α - $(\frac{1}{2}, \frac{1}{3})$ -semiopen set. Also μ_5 is a $(\mathcal{T}_2, \mathcal{T}_1)$ -fuzzy $(\frac{1}{3}, \frac{1}{2})$ -preopen set which is not a $(\mathcal{T}_2, \mathcal{T}_1)$ -fuzzy α - $(\frac{1}{3}, \frac{1}{2})$ -semiopen set which is not a $(\mathcal{T}_2, \mathcal{T}_1)$ -fuzzy α - $(\frac{1}{3}, \frac{1}{2})$ -semiopen set.

THEOREM 3.5. Let μ be a fuzzy set of a smooth bitopological space $(X, \mathcal{T}_1, \mathcal{T}_2)$ and $r, s \in I_0$. Then the following statements are equivalent:

- (1) μ is a $(\mathcal{T}_i, \mathcal{T}_i)$ -fuzzy α -(r, s)-semiopen set.
- (2) μ^c is a $(\mathcal{T}_i, \mathcal{T}_i)$ -fuzzy α -(r, s)-semiclosed set.
- (3) $\mu \leq \mathcal{T}_i \operatorname{Int}(\mathcal{T}_i \operatorname{Cl}(\mathcal{T}_i \operatorname{Int}(\mu, r), s), r).$
- (4) $\mu^c \geq \mathcal{T}_i \text{Cl}(\mathcal{T}_i \text{Int}(\mathcal{T}_i \text{Cl}(\mu^c, r), s), r).$
- (5) μ is a $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)-semiopen and $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)- preopen set.
- (6) μ^c is a $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)-semiclosed and $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)-preclosed set.

Proof. (1) \Leftrightarrow (2), (3) \Leftrightarrow (4) and (5) \Leftrightarrow (6) follow from Theorem 2.2.

(1) \Rightarrow (3) Let μ be a $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy α -(r, s)-semiopen set of X. Then there is a \mathcal{T}_i -fuzzy r-open ρ in X such that $\rho \leq \mu \leq \mathcal{T}_i$ -Int $(\mathcal{T}_j$ -Cl $(\rho, s), r)$. Since $\mathcal{T}_i(\rho) \geq r$ and $\rho \leq \mu$, we have $\rho = \mathcal{T}_i$ -Int $(\rho, r) \leq \mathcal{T}_i$ -Int (μ, r) . Thus

$$\mu \leq T_i - \operatorname{Int}(T_i - \operatorname{Cl}(\rho, s), r) \leq T_i - \operatorname{Int}(T_i - \operatorname{Cl}(T_i - \operatorname{Int}(\mu, r), s), r).$$

(3) \Rightarrow (1) Let \mathcal{T}_i -Int(\mathcal{T}_j -Cl(\mathcal{T}_i -Int(μ, r), s), r) $\geq \mu$ and take $\rho = \mathcal{T}_i$ -Int (μ, r) . Then ρ is a \mathcal{T}_i -fuzzy r-open set. Also

$$\rho = \mathcal{T}_{i}\text{-}\operatorname{Int}(\mu, r) \leq \mu \leq \mathcal{T}_{i}\text{-}\operatorname{Int}(\mathcal{T}_{j}\text{-}\operatorname{Cl}(\mathcal{T}_{i}\text{-}\operatorname{Int}(\mu, r), s), r)$$
$$= \mathcal{T}_{i}\text{-}\operatorname{Int}(\mathcal{T}_{j}\text{-}\operatorname{Cl}(\rho, s), r).$$

Hence μ is a $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy α -(r, s)-semiopen set.

- $(1) \Rightarrow (5)$ It is obvious.
- (5) \Rightarrow (3) Let μ be a $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)-semiopen and $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)-preopen set of X. Then $\mu \leq \mathcal{T}_j$ -Cl $(\mathcal{T}_i$ -Int $(\mu, r), s)$ and $\mu \leq \mathcal{T}_i$ -Int $(\mathcal{T}_i$ -Cl $(\mu, s), r)$. Therefore,

$$\mu \leq \mathcal{T}_{i}\text{-}\operatorname{Int}(\mathcal{T}_{j}\text{-}\operatorname{Cl}(\mu, s), r) \leq \mathcal{T}_{i}\text{-}\operatorname{Int}(\mathcal{T}_{j}\text{-}\operatorname{Cl}(\mathcal{T}_{i}\text{-}\operatorname{Int}(\mu, r), s), s), r)$$
$$= \mathcal{T}_{i}\text{-}\operatorname{Int}(\mathcal{T}_{j}\text{-}\operatorname{Cl}(\mathcal{T}_{i}\text{-}\operatorname{Int}(\mu, r), s), r).$$

This completes the proof.

THEOREM 3.6. (1) Any union of $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy α -(r, s)-semiopen sets is a $(\mathcal{T}_i, \mathcal{T}_i)$ -fuzzy α -(r, s)-semiopen set.

(2) Any intersection of $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy α -(r, s)-semiclosed sets is a $(\mathcal{T}_i, \mathcal{T}_i)$ -fuzzy α -(r, s)-semiclosed set.

Proof. (1) Let $\{\mu_i\}$ be a collection of $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy α -(r, s)-semiopen sets. Then for each i, there is a \mathcal{T}_i -fuzzy r-open set ρ_i such that $\rho_i \leq \mu_i \leq \mathcal{T}_i$ -Int $(\mathcal{T}_j$ -Cl $(\rho, s), r)$. Since $\mathcal{T}_i(\bigvee \rho_i) \geq \bigwedge \mathcal{T}_i(\rho_i) \geq r$, $\bigvee \rho_i$ is a \mathcal{T}_i -fuzzy r-open set. Also

$$\bigvee \rho_{i} \leq \bigvee \mu_{i} \leq \bigvee \mathcal{T}_{i}\text{-}\operatorname{Int}(\mathcal{T}_{j}\text{-}\operatorname{Cl}(\rho_{i}, s), r)$$
$$\leq \mathcal{T}_{i}\text{-}\operatorname{Int}(\mathcal{T}_{j}\text{-}\operatorname{Cl}(\bigvee \rho_{i}, s), r).$$

Thus $\bigvee \mu_i$ is a $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy α -(r, s)-semiopen set. (2) It follows from (1) using Theorem 3.5.

4. Fuzzy pairwise α -(r, s)-semicontinuous mappings

DEFINITION 4.1. Let $f:(X, \mathcal{T}_1, \mathcal{T}_2) \to (Y, \mathcal{U}_1, \mathcal{U}_2)$ be a mapping from a smooth bitopological space X to another smooth bitopological space Y and $r, s \in I_0$. Then f is called a fuzzy pairwise α -(r, s)-semicontinuous mapping if $f^{-1}(\mu)$ is a $(\mathcal{T}_1, \mathcal{T}_2)$ -fuzzy α -(r, s)-semiopen set of X for each \mathcal{U}_1 -fuzzy r-open set μ of Y and $f^{-1}(\nu)$ is a $(\mathcal{T}_2, \mathcal{T}_1)$ -fuzzy α -(s, r)-semiopen set of X for each \mathcal{U}_2 -fuzzy s-open set ν of Y.

REMARK 4.2. It is clear that every fuzzy pairwise (r,s)-continuous mapping is also a fuzzy pairwise α -(r,s)-semicontinuous mapping and every fuzzy pairwise α -(r,s)-semicontinuous mapping is not only a fuzzy pairwise (r,s)-semicontinuous mapping but also a fuzzy pairwise (r,s)-precontinuous mapping. However, the following examples show that all of the converses need not be true.

EXAMPLE 4.3. Let $(X, \mathcal{T}_1, \mathcal{T}_2)$ be a smooth bitopological space as described in Example 3.3. Define $\mathcal{U}_1: I^X \to I$ and $\mathcal{U}_2: I^X \to I$ by

$$\mathcal{U}_1(\mu) = \begin{cases} 1 & \text{if } \mu = \tilde{0}, \tilde{1}, \\ \frac{1}{2} & \text{if } \mu = \mu_3, \\ 0 & \text{otherwise;} \end{cases}$$

and

$$\mathcal{U}_2(\mu) = \begin{cases} 1 & \text{if } \mu = \tilde{0}, \tilde{1}, \\ 0 & \text{otherwise.} \end{cases}$$

Then clearly $(\mathcal{U}_1,\mathcal{U}_2)$ is a smooth bitopology on X. Consider the identity mapping $1_X:(X,\mathcal{T}_1,\mathcal{T}_2)\to(X,\mathcal{U}_1,\mathcal{U}_2)$. Then it is a fuzzy pairwise α - $(\frac{1}{2},\frac{1}{3})$ -semicontinuous mapping which is not a fuzzy pairwise $(\frac{1}{2},\frac{1}{3})$ -continuous mapping.

Example 4.4. Let $(X, \mathcal{T}_1, \mathcal{T}_2)$ be a smooth bitopological space as described in Example 3.4. Define $\mathcal{U}_1: I^X \to I$ and $\mathcal{U}_2: I^X \to I$ by

$$\mathcal{U}_1(\mu) = \begin{cases} 1 & \text{if } \mu = \tilde{0}, \tilde{1}, \\ \frac{1}{2} & \text{if } \mu = \mu_3, \\ 0 & \text{otherwise;} \end{cases}$$

and

$$\mathcal{U}_2(\mu) = \begin{cases} 1 & \text{if } \mu = \tilde{0}, \tilde{1}, \\ 0 & \text{otherwise.} \end{cases}$$

Then clearly $(\mathcal{U}_1, \mathcal{U}_2)$ is a smooth bitopology on X. Consider the identity mapping $1_X: (X, \mathcal{T}_1, \mathcal{T}_2) \to (X, \mathcal{U}_1, \mathcal{U}_2)$. Then it is a fuzzy pairwise $(\frac{1}{2},\frac{1}{3})$ -precontinuous mapping which is not a fuzzy pairwise α - $(\frac{1}{2},\frac{1}{3})$ continuous mapping.

Define $V_1: I^X \to I$ and $V_2: I^X \to I$ by

$$\mathcal{V}_1(\mu) = \begin{cases} 1 & \text{if } \mu = \tilde{0}, \tilde{1}, \\ \frac{1}{2} & \text{if } \mu = \mu_4, \\ 0 & \text{otherwise;} \end{cases}$$

and

$$\mathcal{V}_2(\mu) = \begin{cases} 1 & \text{if } \mu = \tilde{0}, \tilde{1}, \\ 0 & \text{otherwise.} \end{cases}$$

Then clearly $(\mathcal{V}_1, \mathcal{V}_2)$ is a smooth bitopology on X. Consider the identity mapping $1_X: (X, \mathcal{T}_1, \mathcal{T}_2) \to (X, \mathcal{V}_1, \mathcal{V}_2)$. Then it is a fuzzy pairwise $(\frac{1}{2},\frac{1}{3})$ -semicontinuous mapping which is not a fuzzy pairwise α - $(\frac{1}{2},\frac{1}{3})$ continuous mapping.

THEOREM 4.5. Let $f:(X,\mathcal{T}_1,\mathcal{T}_2)\to (Y,\mathcal{U}_1,\mathcal{U}_2)$ be a mapping and $r, s \in I_0$. Then the following statements are equivalent:

- (1) f is a fuzzy pairwise α -(r, s)-semicontinuous mapping.
- (2) $f^{-1}(\mu)$ is a $(\mathcal{T}_1, \mathcal{T}_2)$ -fuzzy α -(r, s)-semiclosed set of X for each \mathcal{U}_1 -fuzzy r-closed set μ of Y and $f^{-1}(\nu)$ is a $(\mathcal{T}_2,\mathcal{T}_1)$ -fuzzy α -(s,r)-semiclosed set of X for each \mathcal{U}_2 -fuzzy s-closed set ν of Y.
- (3) For each fuzzy set μ of Y,

$$\mathcal{T}_1\text{-Cl}(\mathcal{T}_2\text{-Int}(\mathcal{T}_1\text{-Cl}(f^{-1}(\mu),r),s),r) \le f^{-1}(\mathcal{U}_1\text{-Cl}(\mu,r))$$

$$\mathcal{T}_2$$
-Cl $(\mathcal{T}_1$ -Int $(\mathcal{T}_2$ -Cl $(f^{-1}(\mu), s), r), s) \le f^{-1}(\mathcal{U}_2$ -Cl $(\mu, s)).$

(4) For each fuzzy set ρ of X,

$$f(\mathcal{T}_1\text{-}\mathrm{Cl}(\mathcal{T}_2\text{-}\mathrm{Int}(\mathcal{T}_1\text{-}\mathrm{Cl}(\rho,r),s),r)) \leq \mathcal{U}_1\text{-}\mathrm{Cl}(f(\rho),r)$$

and

$$f(\mathcal{T}_2\text{-Cl}(\mathcal{T}_1\text{-Int}(\mathcal{T}_2\text{-Cl}(\rho,s),r),s)) \leq \mathcal{U}_2\text{-Cl}(f(\rho),s).$$

Proof. (1) \Leftrightarrow (2) It follows from Theorem 3.5.

 $(2) \Rightarrow (3)$ Let μ be any fuzzy set of Y. Then $\mathcal{U}_1\text{-Cl}(\mu, r)$ is a \mathcal{U}_1 -fuzzy r-closed set and $\mathcal{U}_2\text{-Cl}(\mu, s)$ is a \mathcal{U}_2 -fuzzy s-closed set of Y. By (2), $f^{-1}(\mathcal{U}_1\text{-Cl}(\mu, r))$ is a $(\mathcal{T}_1, \mathcal{T}_2)$ -fuzzy α -(r, s)-semiclosed set and $f^{-1}(\mathcal{U}_2\text{-Cl}(\mu, s))$ is a $(\mathcal{T}_2, \mathcal{T}_1)$ -fuzzy α -(s, r)-semiclosed set of X. Thus

$$f^{-1}(\mathcal{U}_1\text{-}\mathrm{Cl}(\mu, r)) \ge \mathcal{T}_1\text{-}\mathrm{Cl}(\mathcal{T}_2\text{-}\mathrm{Int}(\mathcal{T}_1\text{-}\mathrm{Cl}(f^{-1}(\mathcal{U}_1\text{-}\mathrm{Cl}(\mu, r)), r), s), r)$$

$$\ge \mathcal{T}_1\text{-}\mathrm{Cl}(\mathcal{T}_2\text{-}\mathrm{Int}(\mathcal{T}_1\text{-}\mathrm{Cl}(f^{-1}(\mu), r), s), r)$$

and

$$f^{-1}(\mathcal{U}_2\text{-}\mathrm{Cl}(\mu, s)) \ge \mathcal{T}_2\text{-}\mathrm{Cl}(\mathcal{T}_1\text{-}\mathrm{Int}(\mathcal{T}_2\text{-}\mathrm{Cl}(f^{-1}(\mathcal{U}_2\text{-}\mathrm{Cl}(\mu, s)), s), r), s)$$

$$\ge \mathcal{T}_2\text{-}\mathrm{Cl}(\mathcal{T}_1\text{-}\mathrm{Int}(\mathcal{T}_2\text{-}\mathrm{Cl}(f^{-1}(\mu), s), r), s).$$

(3) \Rightarrow (4) Let ρ be any fuzzy set of X. Then $f(\rho)$ is a fuzzy set of Y. By (3),

$$f^{-1}(\mathcal{U}_{1}\text{-}\mathrm{Cl}(f(\rho), r)) \geq \mathcal{T}_{1}\text{-}\mathrm{Cl}(\mathcal{T}_{2}\text{-}\mathrm{Int}(\mathcal{T}_{1}\text{-}\mathrm{Cl}(f^{-1}f(\rho), r), s), r)$$

$$\geq \mathcal{T}_{1}\text{-}\mathrm{Cl}(\mathcal{T}_{2}\text{-}\mathrm{Int}(\mathcal{T}_{1}\text{-}\mathrm{Cl}(\rho, r), s), r)$$

and

$$f^{-1}(\mathcal{U}_2\text{-}\mathrm{Cl}(f(\rho),s)) \ge \mathcal{T}_2\text{-}\mathrm{Cl}(\mathcal{T}_1\text{-}\mathrm{Int}(\mathcal{T}_2\text{-}\mathrm{Cl}(f^{-1}f(\rho),s),r),s)$$

$$\ge \mathcal{T}_2\text{-}\mathrm{Cl}(\mathcal{T}_1\text{-}\mathrm{Int}(\mathcal{T}_2\text{-}\mathrm{Cl}(\rho,s),r),s).$$

Hence

$$\mathcal{U}_1\text{-Cl}(f(\rho), r) \ge ff^{-1}(\mathcal{U}_1\text{-Cl}(f(\rho), r))$$

 $\ge f(\mathcal{T}_1\text{-Cl}(\mathcal{T}_2\text{-Int}(\mathcal{T}_1\text{-Cl}(\rho, r), s), r))$

and

$$\mathcal{U}_2\text{-Cl}(f(\rho), s) \ge f f^{-1}(\mathcal{U}_2\text{-Cl}(f(\rho), s))$$

$$\ge f(\mathcal{T}_2\text{-Cl}(\mathcal{T}_1\text{-Int}(\mathcal{T}_2\text{-Cl}(\rho, s), r), s)).$$

(4) \Rightarrow (2) Let μ be any \mathcal{U}_1 -fuzzy r-closed set and ν any \mathcal{U}_2 -fuzzy s-closed set of Y. Then $f^{-1}(\mu)$ and $f^{-1}(\nu)$ are fuzzy sets of X. By (4).

$$f(\mathcal{T}_1\text{-}\mathrm{Cl}(\mathcal{T}_2\text{-}\mathrm{Int}(\mathcal{T}_1\text{-}\mathrm{Cl}(f^{-1}(\mu),r),s),r)) \leq \mathcal{U}_1\text{-}\mathrm{Cl}(ff^{-1}(\mu),r)$$
$$\leq \mathcal{U}_1\text{-}\mathrm{Cl}(\mu,r) = \mu$$

and

$$f(\mathcal{T}_2\text{-}\mathrm{Cl}(\mathcal{T}_1\text{-}\mathrm{Int}(\mathcal{T}_2\text{-}\mathrm{Cl}(f^{-1}(\nu),s),r),s)) \leq \mathcal{U}_2\text{-}\mathrm{Cl}(ff^{-1}(\nu),s)$$

$$\leq \mathcal{U}_2\text{-}\mathrm{Cl}(\nu,s) = \nu.$$

So

$$\mathcal{T}_{1}\text{-}\operatorname{Cl}(\mathcal{T}_{2}\text{-}\operatorname{Int}(\mathcal{T}_{1}\text{-}\operatorname{Cl}(f^{-1}(\mu), r), s), r)$$

$$\leq f^{-1}f(\mathcal{T}_{1}\text{-}\operatorname{Cl}(\mathcal{T}_{2}\text{-}\operatorname{Int}(\mathcal{T}_{1}\text{-}\operatorname{Cl}(f^{-1}(\mu), r), s), r))$$

$$\leq f^{-1}(\mu)$$

and

$$\mathcal{T}_{2}\text{-}\operatorname{Cl}(\mathcal{T}_{1}\text{-}\operatorname{Int}(\mathcal{T}_{2}\text{-}\operatorname{Cl}(f^{-1}(\nu),s),r),s)$$

$$\leq f^{-1}f(\mathcal{T}_{2}\text{-}\operatorname{Cl}(\mathcal{T}_{1}\text{-}\operatorname{Int}(\mathcal{T}_{2}\text{-}\operatorname{Cl}(f^{-1}(\nu),s),r),s))$$

$$\leq f^{-1}(\nu).$$

Thus $f^{-1}(\mu)$ is a $(\mathcal{T}_1, \mathcal{T}_2)$ -fuzzy α -(r, s)-semiclosed set and $f^{-1}(\nu)$ is a $(\mathcal{T}_2, \mathcal{T}_1)$ -fuzzy α -(s, r)-semiclosed set of X.

References

- K. K. Azad, On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 82 (1981), 14-32.
- [2] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182–190.
- [3] K. C. Chattopadhyay and S. K. Samanta, Fuzzy topology: Fuzzy closure operator, fuzzy compactness and fuzzy connectedness, Fuzzy Sets and Systems 54 (1993), 207-212.

- [4] K. C. Chattopadhyay, R. N. Hazra, and S. K. Samanta, Gradation of openness: fuzzy topology, Fuzzy Sets and Systems 49 (1992), 237–242.
- [5] R. N. Hazra, S. K. Samanta, and K. C. Chattopadhyay, Fuzzy topology redefined, Fuzzy Sets and Systems 45 (1992), 79-82.
- [6] A. Kandil, Biproximities and fuzzy bitopological spaces, Simon Stevin 63 (1989), 45-66.
- [7] E. P. Lee, Y. B. Im and H. Han, Semiopen sets on smooth bitopological spaces, Far East J. Math. Sci. 3 (2001), 493–521.
- [8] A. A. Ramadan, Smooth topological spaces, Fuzzy Sets and Systems 48 (1992), 371-375.
- [9] S. Sampath Kumar, Semi-open sets, semi-continuity and semi-open mappings in fuzzy bitopological spaces, Fuzzy Sets and Systems 64 (1994), 421–426.
- [10] _____, On fuzzy pairwise α-continuity and fuzzy pairwise pre-continuity, Fuzzy Sets and Systems 62 (1994), 231–238.
- [11] T. H. Yalvac, Semi-interior and semi-closure of a fuzzy set, J. Math. Anal. Appl. 132 (1988), 356-364.
- [12] L. A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965), 338-353.

DEPARTMENT OF MATHEMATICS, SEONAM UNIVERSITY, NAMWON 590-711, KOREA *E-mail*: eplee@tiger.seonam.ac.kr