## AVERAGING PROPERTY IN BANACH SPACES

## KYUGEUN CHO

ABSTRACT. In this paper, we study averaging properties in Banach space. We prove that the convex block Banach-Saks property is equivalent to the reflexivity in a Banach space. And we show that a weakly compact operator is a convex block Banach-Saks operator.

A Banach space X is said to have the Banach-Saks property if every bounded sequence in X admits a subsequence whose arithmetic means converge in norm. In 1938, S. Kakutani [3] showed that if X is uniformly convex then X has the Banach-Saks property. In 1963, T. Nishiura and D. Waterman [4] proved that if a Banach space X has the Banach-Saks property then X is reflexive.

The natural questions are the followings: For a Banach space X with the Banach-Saks property, is it uniformly convex? And does every reflexive Banach space have the Banach-Saks property? In 1972, A. Baernstein [1] gave an example of a reflexive Banach space which does not have the Banach-Saks property. In 1978, C. J. Seifert [5] showed that the dual of Baernstein space which is not uniformly convex has the Banach-Saks property.

We introduce the following averaging property.

DEFINITION 1. A Banach space X is said to have the convex block Banach-Saks property if every bounded sequence in X admits a convex block sequence whose arithmetic means converge in norm.

It is clear that the Banach-Saks property implies the convex block Banach-Saks property. Since the Banach-Saks property implies the reflexivity in a Banach space, it is an apparent question whether a Banach space with the convex block Banach-Saks property is reflexive.

Received January 2, 2002.

<sup>2000</sup> Mathematics Subject Classification: 46B15.

Key words and phrases: Banach-Saks property, convex block Banach-Saks property, reflexivity, uniformly convex.

This work was Supported by Myong Ji University.

THEOREM 2. A Banach space X has the convex block Banach-Saks property if and only if X is reflexive.

To prove Theorem 2, we consider the followings.

LEMMA 3. Let  $(x_n)$  be a weakly convergent sequence. Then there exists a convex block sequence  $(y_n)$  of  $(x_n)$  such that  $(y_n)$  is norm convergent.

*Proof.* Suppose  $(x_n)$  is weakly convergent to x. Then we have

$$x \in \frac{w}{\overline{co}} \{x_n\}_{n > s} = \frac{\|\cdot\|}{\overline{co}} \{x_n\}_{n > s}, \quad \text{for all } s \in \mathbb{N}.$$

Then for s=1, there exists a convex combination  $y_1=\sum_{i=1}^{p_1}a_ix_j$  in  $co\{x_n\}_{n\geq 1}$  such that  $||y_1-x||<\frac{1}{2}$ . Since

$$x \in \frac{w}{\overline{co}} \{x_n\}_{n > p_1 + 1} = \frac{\|\cdot\|}{\overline{co}} \{x_n\}_{n > p_1 + 1},$$

there exists a convex combination  $y_2 = \sum\limits_{j=p_1+1}^{p_2} a_j x_j$  in  $co\{x_n\}_{n \geq p_1+1}$ such that  $||y_2 - x|| < \frac{1}{2^2}$ . Continue this process, we get a convex block sequence  $(y_n)$  of  $(x_n)$  with  $||y_n - x|| < \frac{1}{2^n}$ . This means that  $y_n \to x$  in norm.

DEFINITION 4. A real infinite matrix  $A = (\alpha_{ij})$  is called an R-matrix if and only if

- (1)  $\sum_{j=1}^{\infty} \alpha_{ij} \not\to 0 \text{ if } i \to \infty$ (2)  $\lim_{i \to \infty} \alpha_{ij} = 0 \text{ for all } j \in \mathbb{N}.$

An R-matrix  $A = (\alpha_{ij})$  is called positive if none of its entries is negative.

The next theorem can be found in [2].

Theorem 5. Let K be a weakly closed bounded convex subset of a Banach space X. Then the following are equivalent:

(1) K is weakly compact;

(2) given  $(x_n) \subseteq K$  there is a positive R-matrix  $A = (\alpha_{ij})$  such that  $\left\{\sum_{j=1}^{\infty} \alpha_{ij} x_j\right\}_{i=1}^{\infty}$  converges in norm; (3) given  $(x_n) \subseteq K$  there is a positive R-matrix  $A = (\alpha_{ij})$  such that  $\left\{\sum_{j=1}^{\infty} \alpha_{ij} x_j\right\}_{i=1}^{\infty}$  converges weakly.

Proof of Theorem 2. Suppose that a Banach space X has the convex block Banach-Saks property. Let  $\{x_n\}$  be a sequence in the unit ball  $B_X$ of X. Then there exists a convex block sequence  $\{y_n\}$  of  $\{x_n\}$  such that  $\left(\frac{1}{n}\sum_{i=1}^n y_i\right)$  converges in norm where  $y_n = \sum_{n=j+1}^{p_n} a_j x_j$ ,  $0 \le a_j \le 1$  and  $\sum_{j=p_{n-1}+1}^{p_n} a_j = 1, \text{ for increasing sequence } \{p_n\} \text{ of nonnegative integers.}$ 

Define a real infinite matrix  $A = (\alpha_{ij})$  with

$$\alpha_{ij} = \begin{cases} \frac{1}{i} a_j, & 1 \le j \le p_i \\ 0, & \text{otherwise.} \end{cases}$$

Then

$$\sum_{j=1}^{\infty} \alpha_{ij} = \sum_{j=1}^{p_i} \frac{1}{i} a_j = \frac{1}{i} \left[ \sum_{j=1}^{p_1} a_j + \dots + \sum_{j=p_{i-1}+1}^{p_i} a_j \right] = 1$$

and

$$0 \le \lim_{i \to \infty} \alpha_{ij} \le \lim_{i \to \infty} \frac{1}{i} = 0,$$

since  $0 \le a_j \le 1$ . Then  $A = (\alpha_{ij})$  is a positive R-matrix. Since

$$\sum_{j=1}^{\infty} \alpha_{ij} x_j = \frac{1}{i} \sum_{j=1}^{p_i} a_j x_j$$

$$= \frac{1}{i} \left[ \sum_{j=1}^{p_1} a_j x_j + \dots + \sum_{j=p_{i-1}+1}^{p_i} a_j x_j \right] = \frac{1}{i} \sum_{j=1}^{i} y_j,$$

 $\left(\sum_{i=1}^{\infty} \alpha_{ij} x_j\right)^{\infty}$  converges in norm. By Theorem 5,  $B_X$  is weakly compact and X is reflexive.

Suppose X is reflexive. Let  $(x_n)$  be a bounded sequence. Then  $(x_n)$  has a weakly convergent subsequence  $(x_{n_k})$ . By Lemma 3, there exists a convex block sequence  $(y_n)$  of  $(x_{n_k})$  such that  $(y_n)$  is norm convergent. Then the arithmetic means of  $(y_n)$  converge in norm. This completes our proof.

DEFINITION 6. A bounded operator  $T: X \to Y$  is a convex Banach-Saks operator if whenever  $(x_n)$  is a bounded sequence in X,  $(Tx_n)$  has a convex block sequence whose arithmetic means are norm convergent in Y.

Certainly if either X or Y has the convex block Banach-Saks property then a bounded operator  $T:X\to Y$  is a convex block Banach-Saks operator. An operator  $T:X\to Y$  is weakly compact if T takes bounded sets to relatively weakly compact sets. It is clear that if either X or Y is reflexive, a bounded operator  $T:X\to Y$  is weakly compact. Considering Theorem 2, we may conjecture that if a bounded operator T is weakly compact, then T is a convex block Banach-Saks operator.

THEOREM 7.  $T: X \to Y$  is weakly compact if and only if  $T: X \to Y$  is a convex block Banach-Saks operator.

*Proof.* Suppose  $T: X \to Y$  is weakly compact. Let  $(x_n)$  be a sequence in  $B_X$ . Then there exists subsequence  $(Tx_{n_k})$  of  $(Tx_n)$  which is weakly convergent. By Lemma 3, there exist a convex block sequence  $(y_n)$  of  $(Tx_{n_k})$  which is norm-convergent in Y and the arithmetic means of  $(y_n)$  are norm convergent in Y.

Suppose  $T: X \to Y$  is a convex block Banach-Saks operator. Let  $(x_n)$  be a bounded sequence in X. Then there exists a convex block sequence  $\{y_n\}$  of  $\{Tx_n\}$  such that  $\left(\frac{1}{n}\sum_{i=1}^n y_i\right)$  converges in norm, where  $y_n = \sum_{p_{n-1}+1}^{p_n} a_j Tx_j$ ,  $0 \le a_j \le 1$  and  $\sum_{j=p_{n-1}+1}^{p_n} a_j = 1$ , for increasing sequence  $\{p_n\}$  of nonnegative integers. Define a real infinite matrix  $A = (\alpha_{ij})$  with

$$\alpha_{ij} = \begin{cases} \frac{1}{i} a_j, & 1 \le j \le p_i \\ 0, & \text{otherwise.} \end{cases}$$

Then

$$\sum_{j=1}^{\infty} \alpha_{ij} = \sum_{j=1}^{p_i} \frac{1}{i} a_j = \frac{1}{i} \left[ \sum_{j=1}^{p_1} a_j + \dots + \sum_{j=p_{i-1}+1}^{p_i} a_j \right] = 1$$

and

$$0 \le \lim_{i \to \infty} \alpha_{ij} \le \lim_{i \to \infty} \frac{1}{i} = 0,$$

since  $0 \le a_j \le 1$ . Then  $A = (\alpha_{ij})$  is a positive R-matrix. Since

$$\sum_{j=1}^{\infty} \alpha_{ij} T x_j = \frac{1}{i} \sum_{j=1}^{p_i} a_j T x_j$$

$$= \frac{1}{i} \left[ \sum_{j=1}^{p_1} a_j T x_j + \dots + \sum_{j=p_{i-1}+1}^{p_i} a_j T x_j \right] = \frac{1}{i} \sum_{j=1}^{i} y_j,$$

 $\left(\sum_{j=1}^{\infty}\alpha_{ij}Tx_j\right)_{i=1}^{\infty} \text{ converges in norm. By Theorem 5, } TB_X \text{ is weakly compact and } T:X\to Y \text{ is weakly compact. This completes our proof.} \square$ 

## References

- [1] A. Baernstein, On reflexivity and summability, Studia Math. 42 (1972), 91-94.
- [2] A. Brunel, H. Fong and L. Sucheston, An ergodic superproperty of Banach spaces defined by a class of matrices, Proc. Amer. Math. Soc. 49 (1975), 373–378.
- [3] S. Kakutani, Weak convergence in uniformly convex spaces, Tôhoku Math. J. 45 (1938), 188-193.
- [4] T. Nishiura and D. Waterman, Reflexivity and summability, Studia Math. 23 (1963), 53-57.
- [5] C. J. Seifert, The dual of Baernstein's space and the Banach-Saks property, Bull. Acad. Polon. Sci. 26 (1978), 237–239.

CENTER FOR LIBERAL ARTS & INSTRUCTIONAL DEVELOPMENT, MYONG JI UNIVERSITY, KYUNG-KI DO 449-728, KOREA

E-mail: kgjo@mju.ac.kr