ON A CHARACTERIZATION OF ROUND SPHERES

LEYLA ONAT

ABSTRACT. It is shown that, an immersion of n-dimensional compact manifold without boundary into \((n + 1)\)-dimensional Euclidean space, hyperbolic space or the open half spheres, is a totally umbilic immersion if for some \(r, r = 2, 3, \cdots, n\) the \(r\)-th mean curvature \(H_r\) does not vanish and there are nonnegative constants \(C_1, C_2, \cdots, C_r\) such that

\[
H_r = \sum_{i=1}^{r-1} C_i H_i.
\]

1. Introduction

Let \(Q^{n+1}\) be the Euclidean space \(\mathbb{R}^{n+1}\), the hyperbolic space \(\mathbb{H}^{n+1}\), or the open half sphere \(S^{n+1}_+\). Let \(x : M \rightarrow Q^{n+1}\) be an isometric immersion, where \(M\) is a compact, \(n\)-dimensional manifold without boundary. Let \(H_r\) denote the \(r\)-th mean curvature of \(M\), that is

\[
H_r = \frac{1}{\binom{n}{r}} \sum_{i_1 < i_2 < \cdots < i_r} \lambda_{i_1} \lambda_{i_2} \cdots \lambda_{i_r},
\]

where \(\lambda_1, \lambda_2, \cdots, \lambda_n\) the principal curvatures of \(M\), \(H_0\) is defined as 1. Obviously \(H_1\) is the usual mean curvature and \(H_n\) is the Gauss Kronecker curvature. In [3], it was shown that if the \((r - 1)\)-th mean curvature of \(M\) does not vanish and the ratio \(\frac{H_r}{H_{r-1}}\) is constant for \(r = 2, 3, \cdots, n\), then \(x(M)\) is a geodesic hypersphere. In [4], the same characterization is obtained in terms of \(H_1\) and \(H_n\). Koh and Lee [5] obtained that if one of the ratio of two mean curvature functions on an isometrically immersed closed hypersurfaces in \(Q^{n+1}\) is constant, then the hypersurfaces is a round sphere.

Received May 8, 2002.
2000 Mathematics Subject Classification: 53C40, 53C42, 53A15.

Key words and phrases: higher order mean curvature, umbilical points, Minkowski formula.
In the sequel we use Minkowski integral formulas [1] which are the main formulas for the proofs of [3], [4] and [5]. In this work \((,) \) denotes the usual Euclidean inner product on \(\mathbb{R}^{n+1} \) (on \(\mathbb{R}^{n+2} \) when \(Q^{n+1} \) is \(\mathbb{R}^{n+1} \) (respectively \(S^{n+1}_+ \)) and \((,) \) denotes the Lorentzian inner product on \(\mathbb{R}^{n+2} \) when \(Q^{n+1} \) is \(H^{n+1} \). The inner product \(\langle x, \mu \rangle \) denotes the support function of \(M \), where \(\mu \) is the normal direction and \(x \) is the position vector field on \(M \).

Lemma 1. [1] For \(k = 1, 2, \cdots, n \) the following identities hold

1. When \(Q^{n+1} \) is \(\mathbb{R}^{n+1} \),

\[
\int_M (H_{k-1} + H_k \langle x, \mu \rangle) \, dM = 0
\]

2. When \(Q^{n+1} \) is \(H^{n+1} \),

\[
\int_M (H_{k-1} \langle x, p \rangle + H_k \langle \mu, p \rangle) \, dM = 0
\]

for any \(p \in \mathbb{R}^{n+2} \),

3. When \(Q^{n+1} \) is \(S^{n+1}_+ \),

\[
\int_M (H_{k-1} \langle x, p \rangle - H_k \langle \mu, p \rangle) \, dM = 0
\]

for any \(p \in \mathbb{R}^{n+2} \).

For any elementary symmetric polynomial \(H_k \), \(k = 1, 2, \cdots, n \) the following algebraic inequalities is well-known [7],

\[
H_{k-1} H_{k+1} - H_k^2 \leq 0,
\]

where the equality holds if and only if all the principal curvatures are equal (i.e., \(x(M) \) is totally umbilical).

2. **Main theorem**

Theorem 1. Let \(Q^{n+1} \) be one of \(\mathbb{R}^{n+1}, H^{n+1} \) or \(S^{n+1}_+ \) and \(x : M \to Q^{n+1} \) be an isometric immersion of a compact, \(n \)-dimensional manifold \(M \) without boundary. Assume \(x(M) \) is convex. If \(H_r \) does not vanish and there are nonnegative constants \(C_1, C_2, \cdots, C_{r-1} \) such that

\[
H_r = \sum_{i=1}^{r-1} C_i H_i
\]

then \(x(M) \) is a geodesic hypersphere.
This theorem is also a generalization of [3].

REMARK 1. An analogy of this theorem in the affine differential geometry of \mathbb{R}^{n+1} was proved in [6].

REMARK 2. When M is an n-dimensional oriented closed submanifold of Euclidean m-space E^m, another version of this theorem was proved in [2].

Proof. Case 1. When \mathbb{Q}^{n+1} is Euclidean space \mathbb{R}^{n+1}, all the principal curvatures and all curvature functions are positive on M since M is convex. Thus

\begin{equation}
H_i H_{r-1} - H_r H_{i-1} \geq 0
\end{equation}

for $i < r$ where the equality holds if and only if all the principal curvatures are equal. The assumptions and the inequality (2.1) imply

\begin{equation}
1 = \sum_{i=1}^{r-1} C_i \frac{H_i}{H_r} \geq \sum_{i=1}^{r-1} C_i \frac{H_{i-1}}{H_{r-1}}
\end{equation}

or

\begin{equation}
H_{r-1} - \sum_{i=1}^{r-1} C_i H_{i-1} \geq 0.
\end{equation}

We use the integral formulas (1.1) for $k = 1, 2, \cdots, r$ then we have

\[0 \leq \int_{M} (H_{r-1} - \sum_{i=1}^{r-1} C_i H_{i-1}) dM = \int_{M} (-H_r + \sum_{i=1}^{r-1} C_i H_i) \langle x, \mu \rangle dM = 0.\]

Now we have from (2.2) the following equality

\[H_{r-1} = \sum_{i=1}^{r-1} C_i H_{i-1}.
\]

This equality and the inequality (2.2) imply that the equality holds in (2.1), which implies that all the principal curvatures are equal. Thus every point is umbilical, that is, $x(M)$ is a geodesic hypersphere.

Case 2. From Lemma 1 and the assumption of the theorem, we have

\[\int_{M} H_{r-1} \langle x, p \rangle dM = -\int_{M} H_r \langle x, p \rangle dM = -\int_{M} \sum_{i=1}^{r-1} C_i H_i \langle x, p \rangle dM
\]

\[= \int_{M} C_1 \langle x, p \rangle dM + \int_{M} C_2 H_1 \langle x, p \rangle dM + \cdots + \int_{M} C_{r-1} H_{r-2} \langle x, p \rangle dM.
\]
It follows that
\[
\int_M (H_{r-1} - \sum_{i=1}^{r-1} C_i H_{i-1}) \langle x, p \rangle \, dM = 0.
\]

Now if take \(p = (1,0, \cdots, 0) \in \mathbb{R}^{n+2} \), then the sign of \(\langle x, p \rangle \) does not change on \(M \). As a consequence of the equality above we have
\[
H_{r-1} = \sum_{i=1}^{r-1} C_i H_{i-1}.
\]

This equality shows that \(x(M) \) is a geodesic hypersphere as in Case 1.

Case 3. From Lemma 1 and the assumption of the theorem, we have
\[
\int_M H_{r-1} \langle x, p \rangle \, dM = \int_M H_r \langle \mu, p \rangle \, dM
\]
\[
= \int_M \sum_{i=1}^{r-1} C_i H_i \langle \mu, p \rangle \, dM
\]
\[
= \int_M \sum_{i=1}^{r-1} C_i H_{i-1} \langle x, p \rangle \, dM.
\]

Thus the following equality holds for every \(p \) on \(M \)
\[
\int_M (H_{r-1} - \sum_{i=1}^{r-1} C_i H_{i-1}) \langle x, p \rangle \, dM = 0.
\]

Since \(M \) lies in the open half sphere, one can find a vector \(p \) so that \(\langle x, p \rangle \) is positive on \(M \), then it follows that,
\[
H_{r-1} - \sum_{i=1}^{r-1} C_i H_{i-1} = 0.
\]

This equality shows that \(x(M) \) is a geodesic hypersphere as in Case 1. \(\Box \)

References

Department of Mathematics, Mersin University, Mersin, Turkey

E-mail: leyhao@mersin.edu.tr