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ON A CHARACTERIZATION OF ROUND SPHERES

LEyLa ONAT

ABSTRACT. It is shown that, an immersion of n-dimensional com-
pact manifold without boundary into (n + 1)-dimensional Euclidean
space, hyperbolic space or the open half spheres, is a totally umbilic

immersion if for some r, r = 2,3, --- , n the r-th mean curvature H,
does not vanish and there are nonnegative constants C1,Co,--. ,C,
such that

r—1
H, = ZICiHi.

1. Introduction

Let Q"*! be the Euclidean space R"**1, the hyperbolic space H**1, or
the open half sphere Sff_‘*’l. Let x : M — Q™! be an isometric immersion,
where M is a compact, n~dimensional manifold without boundary. Let
H, denote the r- th mean curvature of M, that is

Hr:——l— Z )\il)‘iz"')\ira

r .= .
11 <tz <ir
n

where Ay, A9, -, A, the principal curvatures of M, H, is defined as
1. Obviously Hp is the usual mean curvature and H, is the Gauss
Kronecker curvature. In [3], it was shown that if the (r — 1)-th mean
curvature of M does not vanish and the ratio 5 is constant for
r=2,3,---,n, then z (M) is a geodesic hypersphere. In [4], the same
characterization is obtained in terms of H; and H,. Koh and Lee [5)
obtained that if one of the ratio of two mean curvature functions on an
isometrically immersed closed hypersurfaces in Q"*! is constant, then
the hypersurfaces is a round sphere.
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In the sequel we use Minkowski integral formulas [1] which are the
main formulas for the proofs of [3], [4] and [5]. In this work (,) denotes
the usual Euclidean inner product on R™*! (on R"*? ) when Q"*! is
R™! (respectively S7*! ) and {,) denotes the Lorentzian inner product
on R"*2 when Q"*! is H"*!. The inner product (z,u) denotes the
support function of M, where u is the normal direction and z is the
position vector field on M.

LeMmMA 1. [1] For k =1,2,--- ,n the following identities hold
1. When Q! js R7+1

(1.1) [ (His+ B o) ant =0
M
2. When Q™*! jis H*H,
(1.2) l/(Hm1@m%+HMMp»ﬂW=0
M

for any p € R™"+2,
3. When Q7! js S’_f_“

(1.3) Aﬁﬂhm@m—ﬂummMM=o

for any p € R™*2,

For any elementary symmetric polynomial Hy, k = 1,2,--- ,n the
following algebraic inequalities is well-known [7].
Hy 1Hypy — HE <0,

where the equality holds if and only if all the principal curvatures are
equal (i.e., z (M) is totally umbilical).

2. Main theorem

THEOREM 1. Let Q**! be one of R*!, H**! or ST and z: M —

Q"™*! be an isometric immersion of a compact, n-dimensional manifold
M without boundary. Assume x (M) is convex. If H, does not vanish

and there are nonnegative constants Cy,Csy,--- ,Cy._1 such that
r—1
H, = CiH;

=1

then x (M) is a geodesic hypersphere.
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This theorem is also a generalization of [3].

REMARK 1. An analogy of this theorem in the affine differential ge-
ometry of R"*? was proved in [6] .

REMARK 2. When M is an n-dimensional oriented closed subman-
ifold of Euclidean m-space E™, another version of this theorem was
proved in [2].

Proof. Case 1. When Q"*!is Euclidean space R"*1, all the principal
curvatures and all curvature functions are positive on M since M is
convex. Thus

(2.1) HH, 1 — H.H;_; >0

for i < r where the equality holds if and only if all the principal curva-
tures are equal. The assumptions and the inequality (2.1) imply

o, r—1 H'—l
; k3 > Cz 1
Hr — 221 H.

1=

(2.2) 1=

or
r—1

Hp_y =Y CiHi1>0.
i=1
We use the integral formulas (1.1) for ¥k = 1,2,--- ,r then we have

r—1 r—1

o< [ oy = 3 Cills-1)dM = | ~H - 3 ) () M =0
M

=1
Now we have from (2.2) the following equality

r—1
H,_y = Z CiH;_1.
=1

This equality and the inequality (2.2) imply that the equality holds in
(2.1), which implies that all the principal curvatures are equal. Thus
every point is umbilical, that is, z (M) is a geodesic hypersphere.
Case 2. From Lemma 1 and the assumption of the theorem, we have

/H_ (2,p) dM = — /H Mde_—/ ZCH 1, p)d

:/ Ci{z,p) dM+/ CyH; (z,p) dM—l—-'-+/ Cr-1Hy_9 (z,p) dM
M M M
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It follows that
r—1

/M(Hr—l - Z C;H;_1) {(z,p)dM = 0.

Now if take p = (1,0,--- ,0) € R""2, then the sign of (z,p) does not
change on M. As a consequence of the equality above we have

r—1
H,_ = Z CiH; 4.
=1

This equality shows that (M) is a geodesic hypersphere as in Case 1.
Case 3. From Lemma 1 and the assumption of the theorem, we have

/ H, (x,p>dM=/ H, (u,p) dM
M M
r—1
=/ > CiH; {p,p) dM
Mo

r—1
= / Z CiHi—l <fl),p> dM.
M=
Thus the following equality holds for every p on M

r—1
/ (Hp-1 ~ ZCiHi—l) (z,p)dM = 0.
M i=1
Since M lies in the open half sphere, one can find a vector p so that
(z,p) is positive on M, then it follows that,

r—1
Hyoy—) CiHi1=0.
i=1
This equality shows that x(M) is a geodesic hypersphere as in Case
1. O
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