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RELATIONS BETWEEN CERTAIN DOMAINS IN
THE COMPLEX PLANE AND POLYNOMIAL
APPROXIMATION IN THE DOMAINS

Kiwon KiMm

ABSTRACT. We show that the class of inner chordarc domains is
properly contained in the class of exterior quasiconvex domains. We
also show that the class of exterior quasiconvex domains is properly
contained in the class of John disks. We give the conditions which
make the converses of the above results be true.

Next, we show that an exterior quasiconvex domain satisfies cer-
tain growth conditions for the exterior Riemann mapping. From
the results we show that the domain satisfies the Bernstein inequal-
ity and the integrated version of it.

Finally, we assume that f is a function which is continuous in
the closure of a domain D and analytic in D. We show connections
between the smoothness of f and the rate at which it can be ap-
proximated by polynomials on an exterior quasiconvex domain and
a Lipy-extension domain.

1. Introduction

Suppose that D is a domain in the extended complex plane C =
CU{oo}. Let CD =C\ D and D* =C\ D, B(z,r) = {w: [w—2z| <}
for € C and r > 0 and let B = B(0,1) be the unit disk in C. Let £(v)
denote the euclidean length of a curve v, dia(vy) be a diameter of v and
dist(z, 0D) denote the distance from z to 0D.

DEFINITION 1.1. We say that a Jordan domain D in C is c-chordare,
1 < ¢ < o0, if for each pair of points 21, 29 € 9D \ {o0}

(1.1) min(£(m), £(v2)) < clz1 — 22,
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where 7, and 72 are two components of 9D \ {21, 22}.

DEFINITION 1.2. We say that a domain D in C is a K-quasidisk.
1 < K < oo, if it is the image of B under a K-quasiconformal self
mapping of C.

From the definition, it follows that a quasidisk is a Jordan domain
in C. Conversely, a Jordan domain in C with smooth boundary is a
quasidisk. This class of Jordan domains admits the following simple
characterization which is called Ahlfors’ three point condition.

LEMMA 1.3 [1]. A Jordan domain D in C is a K-quasidisk if and
only if there exists a constant ¢, 1 < ¢ < oo, such that for each pair of
points z1, z2 € 0D \ {oc},

(1.2) min(dia(v1), dia(y2)) < clz1 — 22/,
where v, and 7y, are two components of 8D \ {z1,22}. Here K and c

depend on each other.

Thus a chordarc domain is a quasidisk, but there exists a quasidisk
which is not chordarc (for example, a snowflake domain).

A Jordan domain D in C is a K-quasidisk if and only if there is a
constant ¢ > 1 such that each two points z; and 22 in D can be joined
by an arc vy in D such that

£(v) < clz1 — 22|
and
(1.3) min(4(v1),4(v2)) < cdist(z,0D)

for all z € 7, where v; and 7, are the components of v\ {z}, [1], [4].
Here K and ¢ depend on each other.

Next we consider the one-sided versions of (1.1) and (1.2), where
|21 — 22| is replaced by one of the interior distances in D given by

)\D(Zl, 22) = lIle(ﬂ),

0p(z1, 22) = inf dia(B).

Here both infima are taken over all open arcs 8 in D which join z; and
zZ9.
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DEFINITION 1.4. Suppose that D is a Jordan domain in C and 6D
is locally rectifiable. We say that D is a c-inner chordarc domain if for
each pair of points 21, zo € 0D \ {o0}

min(é(v), £(y2)) < cAp(z1, 22),

where v; and 2 are two components of 8D \ {z1, 22}

Thus a chordarc domain is an inner chordarc domain, but there is an
inner chordarc domain which is not chordarc (for example, B \ [0, 1]).

DEFINITION 1.5. A simply connected bounded domain D C C is said
to be a c-John disk if there exist a point zg € D and a constant ¢ > 1
such that each point z; € D can be joined to zy by an arc v in D
satisfying
2(vy(z1, 2)) < cdist(z,0D)

for each z € ~, where v(z1, z) is the subarc of v with endpoints 2z, z.
We call zg a John center, ¢ a John constant and v a c-John arc.

There are several equivalent definitions for John disks, [9], [10], [11],
[14]. For example, a domain D in C is a ¢-John disk if and only if there
is a constant ¢ > 1 such that each pair of points 21, z9 € D can be joined
by an arc vy in D which satisfies (1.3) [10]. Thus the class of quasidisks
is properly contained in the class of John disks. The converse is not true
since a John disk need not even be a Jordan domain. From the definition
we can see that a domain is a John domain if it is possible to move from
one point to another without passing too close to the boundary. Also
to compare with an inner chordarc domain we give the following result
of [10, Theorem 6.3]: A simply connected bounded domain D C C is a
¢-John disk if

min(dia(y;), dia(y2)) € edp(z1, 22),

where 71 and 2 are two components of 0D\ {z1,22}. An inner chordarc
domain is a John disk [7, Corollary 2.13]. But the converse is not true,
since the boundary of John disk need not be locally rectifiable.

DEFINITION 1.6. We say that a set A C C is c-quasiconver, 1 < ¢ <
00, if each pair of points 23, 22 € A\ {oc} can be joined by a rectifiable
curve v in A such that

Uv) < clzr = 2.
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We also say that a domain D in C is a c-exterior quasiconver domain if
CD is c-quasiconvez, 1 < ¢ < 00.

Then CD is 1-quasiconvex if and only if CD is convex.

In Section 2, we show that if D is a c-inner chordarc domain, then D
is a ¢/-exterior quasiconvex domain, ¢’ = ¢’(c). We also show that if D is
a c-exterior quasiconvex domain, then D is a ¢’-John disk, ¢’ = ¢/(c). To
show that the converses are not true, we construct the counterexamples.
Then we give conditions which make the converse of Theorem 2.1 be
true.

DEFINITION 1.7. Suppose that D is a domain in C and f is a complex
valued function defined in D. We say that f is in the Lipschitz class.
Lip, (D), 0 < a < 1, if there is a constant m such that

(1.4) 1f(21) = fz2)l Smlz1 — 2|

for all z1, 2o € D. We let ||f||. denote the infimum of the numbers m
for which (1.4) holds.

f is said to belong to the local Lipschitz class, locLip, (D), if there is
a constant m such that (1.4) holds whenever z;, 2z lie in any open disk
which is contained in D. Let ||f||'¢ denote the infimum of the numbers
m such that (1.4) holds in this situation.

A domain D is called a Lip,-extension domain if there exists a con-
stant a depending on D and a such that f € locLip,(D) implies f €
Lip, (D) with

1 le < all I

In [6] Gehring and Martio proved that quasidisks are Lip,-exten-sion
domains for all a € (0,1]. In the same paper examples are given of
domains which are Lip,-extension domains but not quasidisks.

DEFINITION 1.8. Suppose that E is a bounded continuum whose
complement in C is connected. If f is continuous on E and analytic on
the interior of E, then the best approzimation E,(f) of f by polynomials
of degree n is given by

En(f) =inf{||f —plle:p € P},

where

Iflle = max{|f(2)| : z € E}

and P, denotes the class of polynomials p of degree at most n.
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In Section 3, we show that exterior quasiconvex domains satisfy cer-
tain growth conditions for the exterior Riemann mapping. From the
results we show that the domains satisfy the Bernstein inequality and
the integrated version of it. Furthermore we show connections between
the smoothness of a function f and the rate at which it can be approx-
imated by polynomials on domains introduced above.

2. Relations between inner chordarc domains, exterior qua-
siconvex domains and John disks

THEOREM 2.1. Suppose that D is a Jordan domain in C and that
0D is locally rectifiable. If D is a c-inner chordarc domain, then D is
a c-exterior quasiconvex domain, where ¢/, 1 < ¢’ < o0, is a constant
which depends only on c.

To show Theorem 2.1, we need the following fact.

PROPOSITION 2.2 [7, Theorem 2.7|. D is a c-inner chordarc domain

if and only if there is a constant ¢’ such that for each straight cross cut
B =[x,z of D

min(¢(m), £(y2)) < c4(B),

where v, and 7y, are two components of 8D \ {2y, 22} and ¢, ¢’ depend
only on each other.

Proof of Theorem 2.1. Suppose that D is a c-inner chordarc domain.
Fix z1, 22 € CD and let 8 = [z1, 23] be the line segment joining 27 and
z3. If B C CD, then

(2.1) €B) = |21 — 2.
If 8ND # ¢, let B;,j=1,2,--- k, be the components of 3N D with
end points y;, y; € D and let o; be the component of 9D \ {y;, Y5t

with shorter length, lebeled from z;. Since each §; is a straight cross
cut of D, by Proposition 2.2 for some ¢’ > 1, depending only on c,

Uaj) < UB;) = y; — yjl-

Set
v = [z1, y1] U (U (o U [}, y+1])) U g, 22].
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Then « is a curve in CD joining z; and z, and

(2.2)
k k-1
0y) <l =il + DIy —vil+ D WG =yl + vk — 22l £ ¢ a1 — 2.
j=1 j=1
Therefore by (2.1) and (2.2) CD is ¢-quasiconvex. O

THEOREM 2.3. Suppose that D is a Jordan domain in C.

(1) If D is a c-exterior quasiconvex domain, then D is a ¢’-John disk.
(2) If D* is c-quasiconvex, then D is a ¢/-John disk.

Here ¢’ depend only on c.
To prove Theorem 2.3 we need a lemma.

LEMMA 2.4. If D is a Jordan domain in C, then the following condi-
tions are equivalent, where the constants in each condition need not be
the same:

(1) D is a c-John disk.

(2) For every z € C and r > 0, any two points in CD N B(z,7) can
be joined by a continuum in CD N B(z,cr).

(3) Condition (2) holds for D*, i.e., each pair of points 21,22 € D~
can be joined by a continuum E C D* for which

dla.(E) < C|21 — 22|.

Proof. The equivalence of (1) and (2) is proved in {10, Theorem 4.5].
Suppose that (3) holds, then the proof of [16, Proposition 4.1 (2)] gives
(2). Suppose next that (2) holds, fix z € C and r > 0, and choose
21,22 € D* N B(z,r). Then by hypothesis there exists an arc 7 joining
21 and 2o in CD N B(z,cr). Now since D* is a Jordan domain, there
exists an imbedding h : CD — D* such that h(z) = z for z € CD with
d(z,0D*) > ¢, where 0 < € < min(d(z;,0D),r), j = 1,2. Then for each
z € CD, |h(z) — z| < € and hence h(7) is an arc joining 21 and 23 in
D*NB(z,(c+ 1)r). O

Proof of Theorem 2.8. Suppose that CD is c-quasiconvex. Then each
pair of points z1, 23 € CD \ {00} can be joined by a rectifiable curve ~
in C'D such that

dia(y) < €(v) < |21 — 22|
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Therefore by the equivalence of (1) and (2) in Lemma 2.4, D is a
¢/-John disk, ¢/ = ¢/(c). Next suppose that D* is c-quasiconvex. Then
similarly D* satisfies the condition of Lemma 2.4 (3), and then D is a
c-John disk, ¢ = ¢(c). O

Now we construct a counterexample to show that the converse of
Theorem 2.1 is not true.

THEOREM 2.5. There is a domain D in C which is an exterior qua-
siconvex domain, but not an inner chordarc domain.

Proof. Consider the Jordan arcs oy, g, ,ay, -+ as shown in Fig-
ure 1 in [14], where

|lzi —w;| = |lwi — Gl = |G = & = |w; — &| =227,

t=1,2,3,--- and z; = —8. Then ¢; converges to 0. Let a be the Jordan
arc obtained by letting &; = z;,; foralli=1,2,3,--- Then

1 1 4.2
l(a)=2+2-24+14+2-1- §+§+2'§‘(§) + -
1 1
=@+l+5+5+0)+ +(4+3 +—6+ ).

2

Since the second series diverges, « is nonrectifiable. Next let o/ = {z =
z+iyeC: z—iy €a} and let

A={weC:w=2e9 zea}
A={weC:w=ze%z2€a}.
Now suppose that D is a component of B (0,8) \ {4 U A’} with larger
diameter. Then C'D is obviously quasiconvex. But dD is not regular,
thus by the following Theorem 2.8, D is not an inner chordarc domain.O

To get conditions which make the converse of Theorem 2.1 be true,
we introduce the following concept.

DEFINITION 2.6. A curve « in C is ¢-regular if for all z € C and each
r>0
mi(aNB(z,7)) <cr,

where m; denotes the 1-dimensional Hausdorff measure.

A chordarc domain is a quasidisk with regular boundary [13, Propo-
sition 7.7] and the following tells us that an inner chordarc domain is a
John disk with regular boundary.
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PROPOSITION 2.7 [7, Theorem 2.8]. Suppose that D be a Jordan
domain in C and that 8D is locally rectifiable. Then the following
conditions are equivalent:

(1) D is a c-inner chordarc domain,

(2) D is a c-John disk and 8D is ¢ -regular,

(3) D is a c-John disk and for each bounded subarc -y in 0D,

£(vy) < ¢ dia(y).

Here the constants c, ¢ depend only on each other.

Now we can replace the John disk condition in Proposition 2.7 by
exterior quasiconvex condition.

THEOREM 2.8. Suppose that D be a Jordan domain in C and that
0D is locally rectifiable. Then the following conditions are equivalent:
(1) D is a c-inner chordarc domain,
(2) D is a c,-exterior quasiconvex domain and 8D is ce-regular,
(3) D is a ci-exterior quasiconvex domain and for each bounded
subarc v in 8D,

() < ca dia(y).

Here the constants c, ¢1, ¢ depend only on each other.

Proof. Suppose that D is a c-inner chordarc domain. Then by Theo-
rem 2.1 D is a c;-exterior quasiconvex domain. By the similar arguments
to the proof of Proposition 2.7 we obtain that 0D is co-regular and that
for each bounded subarc v in 0D,

£(v) < cpdia(y).

Next suppose that D holds (3). Then by Theorem 2.3 (1), D is
a c-John disk. Therefore by Proposition 2.7 D is a c-inner chordarc
domain. O

Next we construct a counterexample to show that the converse of
Theorem 2.3 (1) is not true.

THEOREM 2.9. There is a domain D in C which is a John disk but
not an exterior quasiconvex domain.
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Proof. Let a be the nonrectifiable Jordan arc in the proof of Theorem
2.5. Then we construct another similar nonrectifiable Jordan arc o’
below «. For arbitrary € > 0, consider lines 811, f12 and Bi3 which
are parallel to the segments [z1,w1], [w1,(1] and [¢1,&1] with distance
€271, respectively. Let w,’ denote an intersection point of 51; and fi2
and let ¢;’ be an intersection point of 812 and Bi5. Also consider a line
B21 which is parallel to a segment [22,w;] with distance €272 and let &;’
denote an intersection point of Bi3 and B2;. Next let

all - [le7w1,] U [wll?cll] U [C1l>€1[]7

where 21’ is an intersection point of 811 and B(0,8). Similarly, for each
1 =2,3,--- consider lines which are parallel to each line segment of o
with distance €27 and consider the intersection points of each neighbor-
ing lines. Then we obtain «;’ by joining those points by segments and by
letting z;" = & 1" fori =2,3,---. Then we have a nonrectifiable Jordan
arc o/ = U, o below a. Since &’ converges to 0, a and o' meet at 0.
Let D be the component of B (0,8) \ {@ U &'} which contains 1. Then
any curve v in D* joining 0 to a point z € C\ B(0, 8) is nonrectifiable,
since -y contains a subarc whose length converges to ¢(a) as € — 0. Thus
CD is not quasiconvex. On the other hand, D is a ¢-John disk. To show
this we will regard D as

D = D, U D,
where D; is the subdomain of D whose boundary is
aU{zeC:|z|]=8Imz>0}U{zeC:|z2—4] =4,Imz <0}
and D, is the subdomain of D whose boundary is
dU{zeC:|z|=8,Imz2<0tU{z€C:|z2—4=4,Imz > 0}.
Then since D, and D, are quasidisks, D; N Dy # @, CD is connected

and we conclude from the following Lemma 2.10 that D = D, U D5 is a
c-John disk. 0O

LEMMA 2.10. @ppose that D;, i = 1,2 are K;-quasidisks such that
Dy NDy # @ and C\ (D; U D) is connected. Then D = Dy U D, is a
c-John disk.
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Proof. Choose zy € D{ N Dy such that

dist(z9,0D) = sup dist(z,0D).
z2€D1NDy

Suppose first that zg € Dy N Dy, fix 2z € Dy and let o be the
hyperbolic geodesic in D; joining z and z;. Since D, is a K;-quasidisk.
we have a constant a; = a1(K;) > 1 such that for each z € a;

(23) 2(041(21, Z)) < (11]25 — le

and

(2.4) .mg)n1 a1 (zj,2)) < ardist(z,0Dy) < aidist(z,0D).
J=U
Next let

dia(D)

= dist(z0,0D) =

and let ¢; = 2a?b. Now we will show that
(2.5) oy (z,21)) < endist(z,0D)

for all 2 € a; and hence that D is a ¢;-John disk. We consider two cases
Suppose first that

1
|z — zp] < §dist(z(),8D).
Then
1
dist(z,0D) > dist(z,0D) — |z — zo| 2 §dist(zo,3D)

and hence by (2.3)

lai(z1,2)) € a1lz — z1] < ardia(D) = a1bdist(z,0D)
< 2a,bdist(z,0D) < cydist(z,0D).

Suppose next that

|2 — z0] > %dist(zo,@D).
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If £(cn (20, 2)) < £(c1(2,21)), then as above and by (2.4)

U(ay(z,21)) < ardia(D) < a1bdist(z9,0D) < 2a1b|z — z|
< 2a1b0(a;(z, 20)) < 2aibdist(z,0D) = c,dist(z,dD).

If ¢(ai1 (20, 2)) > €(a1(2,21)), then by (2.4)
lai(z,21)) < ardist(z,0D) < cydist(z,0D).

Next fix 2, € D, and let ay be the hyperbolic geodesic joining z; and
29 in Do. Then as above we have

(2.6) U aa(z,22)) < cadist(z,0D)

for each z € ay, where ¢; = 2a3b. Let ¢ = max(cy,cp). Then by (2.5)
and (2.6) D is a c-John disk and ¢ depends on K3, K5 and a domain D.

Suppose next that 29 € 9(D,NDy)\0D. Since 2y € (D1 NDy)\OD;
for : = 1 or 2, 25 € D;. Hence by the same argument as above, D is a
c-John disk. 0

3. Exterior Riemann mapping, the Bernstein inequality and
polynomial approximation in domains

Let E be the closure of a simply connected domain D in C. It is a
well known fact that if g : C\ B — C\ E is a conformal mapping with
g(00) = 00, then

o0
gw) =a_jw+ Z anw™ ",
n=0

for |w| > 1, [12]. The number |a_,| is called the transfinite diameter of
E, denoted by tr(E). By performing a preliminary similarity mapping
we may assume without loss of generality that tr(E) = 1.

Bernstein proved that if E is the closure of a euclidean disk, then it
satisfies the Bernstein inequality

, n
s%p |p'(2)] < E'_(F) s%p Ip(2)]

for all p € P,, see [2].
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For the purpose of this section, we say that D is an open k-quasidisk,
0 < k < 1, if one and hence each conformal mapping g : C\B—-C\D
can be extended to a K-quasiconformal mapping of C, where K = if—’,:

A continuum E in C is said to be a closed k-quasidisk, if E = D,
where D is as above.

In [2] Anderson, Gehring and Hinkkanen extended the Bernstein’s
result to the case where E is a closed k-quasidisk, 0 < k < 1, as follows:
if F is a closed k-quasidisk, then for each p € P, it satisfies the Bernstein

inequality
b

/ l
u < q——— SUu

and the integrated version of the Bernstein inequality

b
n
<c su z)|, 21, 22 € E,
= ltT(E) Eplp( )l 1 2

)P(Zl) — p(z2)
Z1 — &9

where a = 27 %e, c; = Q”ke(g +1and1<b=1+k<2.
In [8], we extend the Bernstein inequality for a closed k-quasidisk.
0 < k < 1, to the case where E is the closure of a John disk.

PRrOPOSITION 3.1 [8, THEOREM 1.3]. If E is the closure of a c-John
disk with tr(E) = 1, then the Bernstein inequality
(3.1) sup Ip'(2)| < an’ sup ()]

holds for each p € P,, where a = a(D) and b=1b(c), 1 <b < 2.

The following is a characterization of any bounded continuum which
satisfies (3.1) in terms of the normalized exterior Riemann mapping g.

PROPOSITION 3.2 [8, Corollary 3.22]. Suppose that E is a bounded
continuum in C with connected complement and tr(E) = 1. Then (3.1)
holds for some a and 1 < b < 2 if and only if there exist constants
¢,1 < ¢ <2, and m > 0 which satisfy

for 1 < |w| = r < v/2+ 1. Here for the sufficiency a = a(m,c), b = b(c)
and for the necessity ¢ = c¢(b), m =m(a, b).

Combining Proposition 3.1 and Proposition 3.2, we obtain the follow-
ing:



Relations between certain domains 699

THEOREM 3.3. If E is the closure of a c-John disk with tr(E) = 1,
then

(3.2) g’ (w)] > m(1 - 5)"

for1 < |w|=r<v2+1. Herem =m(c, D) and k =k(c), 0 < k < 1.

Next we show that exterior quasiconvex domains satisfy the simi-
lar growth conditions for the exterior Riemann mapping g to Theorem
3.3. From the results we show that the domains satisfy the Bernstein
inequality and also the integrated version of it.

DEFINITION 3.4. Let T’ be a curve family in a domain D in C. A
nonnegative Borel function p is said to be admissible for T if

/pdszl
-

for all locally rectifiable curves v € I'. Then

M) = inf// pldx dy
r JJc

is said to be the modulus of I', where the infimum is taken over all
admissible functions p for the curve family T.

THEOREM 3.5. IfE is the closure of a c-exterior quasiconvex bounded
domain D in C, then E holds (3.2) and

(3.3) |w|2m’ (1_’%)k

wi — We

for 1 < |wi|=|wa| =7 < V241, where k = k(c), 0 < k<1, m and m’
are constants depending on ¢, D.

Proof. Suppose that E is the closure of a c-exterior quasiconvex
bounded domain D in C. Then by Theorem 2.3 (1) and by Theorem 3.3
E holds (3.2).

To show that E satisfies (3.3), let w;, we be two points in B* with
1 < |wi| = |wa| = r < V2+1. First we show that if | arg w;, —arg wo| = 7,
then for some b > 0,

(3.4) lg(w1) — g(ws)| > b> 0.
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Then we may assume that |argw; — arg wa| < 8 for some 0 < 0y < 7.

To show (3.4), suppose that (3.4) does not hold. Then for z; = g(w1)
and zp = g(ws) in D*, |z; — 22| can be arbitrary small. Also since D
is a c-exterior quasiconvex bounded domain, z;, z; can be joined by a
rectifiable curve v in CD such that

dia(y) < €(v) < 21 — 2|

Thus dia(y) can be arbitrary small. Let v = g71(y), F be a circle
centered at 0 and containing 7, and let F = g(F ). Let E = {2 :
|z — 22| = dia(y) = a} and E) = {z : |z — 22| = dist(22, F) = b}. Let I
be the family of curves joining v and F " in the intersection of B* and
interior of F'. Also let T be the family of curves joining v and F in the
intersection of C'D and interior of F.

Let I'; be the family of curves joining F and E; in B(0,b) \ B(0,a).
Then every curve v € I' has a subcurve which belongs to I';. Thus by
[15, Theorem 6.4 and Theorem 7.5]

2
M(D) < M(T)) =

].Og a

Since dia(y) = a is arbitrary small, we have M(I') = 0. On the other
hands, by [15, Theorem 10.12 and Theorem 11.3]

22 dia(v) 2 T
MI') > ~~log 4 > S log ————=
()= o OB dist(v',F') — « o8 dist(y', F")
Z Co > 0

But by [15, Theorem 8.1], M (I') = M(I") and this is a contradiction.

Then we assume that | arg w; — argws| < 8 for some 0 < 6y < 7. By
Theorem 2.3 (1) D is a ¢/- John disk, ¢’ = ¢/(¢), and thus there is a John
center zp € D. By performing a preliminary similarity mapping we may
assume without loss of generality that zg = 0 and dist(zg, D) > 1. Let
n be a mapping from B* onto B such that

1 .
n(w) = = w;=n(w;), Jj=1,2

Also let h be a self mapping of C such that

h(z) = -, z'j = h(z;), i=1,2,
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for z; = g(w;). Next let f be a conformal mapping from B = n(B*) onto
h(D*) such that f(w';) = 2';, j = 1, 2. Let o/’ be a hyperbolic geodesic
in B joining w’y and w's. Then o’ = f(a'’) is a hyperbolic geodesic in
h(D*) joining 2’{ and 2’5. Also we have

1
(3.5) o C B0, ;).
Now let @ = h™!(o/) and let &/ = n~ (o).
Since D is a c-exterior quasiconvex domain, there is a rectifiable curve
v in CD joining 2; and 2 such that

(3.6) ) < clzy — o).

Let v/ = h(y) and let M = sup{|zo — 2| : 2 € 8D}. Then since
dist(zg, 0D) > 1, we have M > 1. Since D is a ¢/-John disk with
' = d(c),

a C B(zo, e M)

for some constant ¢; = ¢;(c), 1 < ¢; < co. Otherwise D has a outward
cusp and thus D is not a John disk. Hence for each z € a, we have
1 < |z| < e1M and thus for each 2’ € o, we obtain A7 < || < 1.
Therefore for each w’ € &, we have 0 < d < |w'| < 1 for d = dist(0, s"),
where s = f~1(s’), s’ = {z € C : [¢| = 7 }. Then since 1 < |w| < 4
for w € o, by (3.5) & joins w; and wy in CB(0,r) without passing
through co.

Now since for 1 < |z| < et M

o < W= o <1
we have
(3.7 ) <600 = [ W@ < ).
Similarly
(3.8) GaEte) < f) < £a).

Also by [5, Theorem 2] and (3.7) we have

(3.9) o) < b (') < bil(y),
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where b, is a universal constant. Since a = g(a'’), by (3.8)
B10)  ta) 2 all) =aklgl@) = [ |g(2ids

where a = G—}u—)g Therefore by the first part of Theorem 3.5, (3.6).
(3.9) and (3.10),

Jotwn) = g(wa)] = o1 — 22| 2 16() 2 7 —4(a')

Zi/ |9 (= \ds>—f
blC o’

am "
> E*I“Ef( ) (1 - r_z)
am 1.k

for some k = k(c), 0 < k < 1. Hence (3.3) holds with a constant m’
depending on ¢ and D. C

The following Bernstein inequality (3.11) for the closure of an exterior
quasiconvex domain is an immediate result from Theorem 2.3 (1) and
Proposition 3.1. In [2], Anderson, Gehring and Hinkkanen showed that
the integrated version (3.12) of the Bernstein inequality holds for the
closure of a k-quasidisk with 0 < k < 1. Now we extend their result to
the closure of an exterior quasiconvex domain with 0 < k < 1 by using
(3.3) in Theorem 3.5 and by the similar argument to the proof in [2.
Theorem 1].

THEOREM 3.6. Suppose that E is the closure of a c-exterior quasi-
convex domain D. Then for each polynomial p in z of degree n it satisfies
the Bernstein inequality

1+k

(3.11) s?wwhmgﬁf?mm,

where a = a(D) and k = k(c), 0 < k < 1, as in (3.1). Also it satisfies
the integrated version of the Bernstein inequality

n1+k
<¢ sup |p(2)]
- t’f’(E) E '

612 o) =atz)

Z] — 22
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where ¢; = ¢1(c, D) and k is same as the above (3.11).

Next we assume that f is a function which is continuous in E and
analytic in D =interior of E. If FE is a euclidean disk, then there is
a connection between the smoothness of a function f and the rate at
which it can be approximated by polynomials as follows.

PROPOSITION 3.7 [3, p.147 and p.200]. If E is a euclidean disk, then
for 0 < a <1, E,(f) = O(n™®) as n — oo if and only if f € Lip,(E).

In [2], they extended the result to the case where E is a closed k-
quasidisk, 0 < k < 1, as follows: if F is a closed k-quasidisk, if 0 < a <
1+ k& and if

En(f)=0(n"%)
as n — oo, then f € Lipg(FE), where 8 = T

Now we extend their result to the closure of an exterior quasiconvex
domain.

THEOREM 3.8. Suppose E is the closure of a c-exterior quasiconvex
domain. Then there exists a constant k, 0 < k < 1, depending only on
c such that if 0 < a < 1+ k and if

En(f)=0(n"")
as m — oo, then f € Lipg(E), where f = (-1—%,5

Proof. To prove Theorem 3.8, the most important fact is the inequal-
ity (3.12) and then by the same arguments to the proof in [2, Theorem
2] we can prove it. O

Finally, for Lip,-extension domains we show a similar result to The-
orem 3.8.

THEOREM 3.9. Suppose E is the closure of a Lip,-extension domain
D,0<a<l. If
En(f)=0(n"")

as n — oo, then f € Lip,(FE).

Proof. Suppose that E,(f) = O(n™) as n — oco. Then for any open
disk U in D

Wf=»pllg <IIf—plle <en™,

where ¢ > 0 is a constant. By Proposition 3.7 f € Lip,(U). Since D is
a Lip,-extension domain, f € Lip,(D). Now since f is continuous on
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dD, for each pair of points z1, 2o € D and for sequences {wy}, {yn}
in D with lim,,_, o wy, = 21, liMy, o Yn = 22 We have

Mim f(wn) = f(z1),  lhm fya) = flz2).
Thus
f(z1) = f(z2)] = lm [f(wn) = f(yn)| < lim m|wy = ynl®
< |z1 — 22|

Therefore, f € Lip,(E). O
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