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ERROR ESTIMATES FOR OPTION
PRICES IN JUMP-DIFFUSION MODELS

IN-Suk WEE

ABSTRACT. We consider a jump-diffusion model generated by a
Lévy process for an asset price. We present an error estimate for
the option prices between the jump-diffusion model and the Black-
Scholes model when the former converges weakly to the latter.

1. Introduction

We consider a jump-diffusion process Sf for an asset price satisfying
(1.1) dsS? = 8_dyy,

where Y;? is a Lévy process on (2, {F?}, P?) whose characteristic func-
tion is represented as

E exp(iuY;) = exp(ty’ (u)),

(02)2 u?

+ / (eiuz _1_ iU$)V5(dx) +/ (eiuf _ 1)1/5(d511'),
{lz|<1} {lz[>1}

W (u) = ifou —

/(1 A 22 (dz) < oo.

We shall suppose that the noise processes Yt‘S converge weakly to Brow-
nian motion as é tends to zero. Roughly speaking, we consider a jump-
diffusion model when the intensity of the jumps is very large and the
minimum size of the jumps is very small.

For the asset price as a jump-diffusion model such as (1.1), it is
well-known that the market is incomplete in general. There are many
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equivalent martingale measures to which we can price a contingent claim
allowing no arbitrages. Among them, the minimal martingale measure
was introduced by Follmer and Schweizer [2] for a general semimartin-
gale model and was derived explicitly by Chan [1] for our model. Hong
and Wee [5] proved that if Y converges weakly to a Brownian motion as
& — 0, the option prices for the jump-diffusion models given by the min-
imal martingale measures converge to the option price for Black-Scholes
model via probabilistic method.

In this work, we propose a method for error estimates between two
option prices analytically, when the European contingent claim is given
by a smooth function of the asset price at the expiration.

2. Main result

We assume that the filtration {#}} is the minimal one generated
by Y? and satisfies the usual conditions, and the sample paths are right-
continuous and have left-hand limits. Furthermore, we assume that

(A1)
EIYI‘SIS < o,
which is equivalent to

/ WPV (dy) < oo
{ly|=1}

Under this assumption, it is possible to decompose Y;® on (2, {F{}.
P?%) as
YY) = o°Bl+ / / 3(ds, dy) — v°(dy)ds) + tEps (YY)

= B + M{ + a’t.

Here 9(ds, dy) is a Poisson measure with intensity measure ds x Vo (dy).
B? is a Brownian motion and they are independent. In order to obtain
weak convergence of Y to a Brownian motion, we make the following
assumptions : as § — 0,

(A2.1) f{ly|>€} y2v%(dy) — 0 for any € > 0,

(A2.2) a® — a,
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(A2.3) (0°)2 + [y?/°(dy) — o2 > 0.

If (A2.1), (A2.2), and (A2.3) hold, then the jump-diffusion models
(S%1P%) in (1.1) converge weakly to the following Black-Scholes model
(S|P) satisfying

(21) dSt = Stdyvtv

where
Y, =0B;+at

and {B;} is a Brownian motion on (2, {%;}, P). See [5] for details.

We now recall how to price European contingent claims TS = ¢(S3)
and I’ = ¢(S7) on 8% and S respectively with the maturity T fixed.
As we have mentioned before, there are many equivalent martingale
measures on (2%, {F}}, P?) under which e™"S? in (1.1) becomes a mar-
tingale when r is the risk-free interest rate. Among them, we choose the
minimal martingale measure to price the contingent claim I’ which we
now explain briefly. See Chan (1] and Hong and Wee [5] for details and
further references. To define the minimal martingale measure, we need
the following conditions;

(A3) The support of 1% is contained in (-1, ~$;—), and

/ (In(1 + )% (dy) < oo,

where
5

5 T—0a < 0

VT OO [y
Then the minimal martingale measure Q9 for (S%|P?) is given by
d@?®
dpP?

I.F;s = Ztav
where
t
Z=1+ / v Z8_(o%dBS + dM?).
0

Let ¢ be a twice differentiable function with bounded first and second
derivatives. Then the price of I = cp(S%) with respect to Q° is given
by

W (2, 1) = Bgs (e p(S7.(T))) ,
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where S (u) =z + [ Sgw(*r—)dYT‘s. Then «? is a C%! function defined
on [0,00) x [0,T] and satisfies

<8tu5+Afu5 ——ru‘S) (r,t) = 0, (z,¢)€(0,00) % (0,T)

(2.2) (2, T) = ¢(x),
where
Alul(z,t) = %(05)23:28mu6(:c, t) + redyu’(z, t)

+ /(U's(ﬂf(l +y),t) — u'(x,1) — 2ydpu’ (,1)7° (dy),

and
7 (dy) = (1 +~+°y) (dy).

For the well-known Black-Scholes model (S|P) in (2.1), there exists
unique equivalent martingale measure @ and the price of I' = p(ST) is
given by

Eq(e™ " Yp(ST)|Fr) = u(Si, 1),
where u is a C%! function satisfying

(Byu + Agu — ru) (z,t) = 0, (z,t) € (0,00) x (0,T)

(2.3) u(z,T) = (),
(Aru)(z,t) = %azxzamu(x,t)—}-rxazu(x, t).

We assume a stronger condition than (A2.1).

(A2.1) For any € > 0,

/ 0 (dy) - 0as 6 —0.
{lyl>e}

It was shown in [5], that if (A1), (A2) and (A3) hold with (A2.1)" re-
placing (A2.1), thenas § — 0

wl(z,t) — ulz,t).

In this work, we find the error estimate ud(t,z) — u(t,x) as & — 0
which is basically a Taylor series expansion in terms of 4. Note that
w0 and u are the solutions of the Cauchy problems for the parabolic
integro-differential equation and for the parabolic differential equation
respectively. Although the uniqueness and existence of solution for the
Cauchy problem to a parabolic differential equation are well-known in a
wide generality, the similar problem for a parabolic integro-differential
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equation has been solved in a very restricted sense, to the best of our
knowledge. For convenience of readers, we state those relevant results
concerning our problem in a standard form. Readers may find the proofs
in Garroni and Menaldi [3]. Let

Qr = Rx(0,T)
Lu(z,t) = a2(z,t)0zu(z,t) + a1(z,t)0;u(z,t) + agz, )ulz,t)
Tule,t) = [ (e +),0) — u(e,6) — i) Bsule, D)r(dy)

where 7 is a o-finite measure satisfying

(2.4) /Mw(dy) < 00
1+(y)
We further consider, for 0 < o < 1,
(2.5) a; € C*% (Qr),
and
(2.6) j is Hélder-continuous with exponent a.

Here C”“""”%—a(@) denotes the usual Holder space, where k is a non-
negative integer and 0 < o < 1.

PROPOSITION 2.1. (The Cauchy problem for a parabolic differential
equation)
Consider
(27) 8t'll,(117,t) - LU(ZE,t) = f(wvt)a (:L',t) € QT
w(x,0) = o(z).
Assume that (2.5) holds and for p > 0,
(1) az(.’L‘,t) 2> W for (II?,t) € QTa
(2) f,y are continuous such that
|f (z,1)] + [¢(2)] < Cy exp(Caz?),

for some Cq, Cy > 0,
(3) f is Holder continuous in x with exponent « uniformly for t.
Then there is unique solution to (2.7) satisfying

lu(z, t)] < K3 exp(K21:2),

where K1 and K3 depend on C1,C2 and T'. If in addition, f € Cc*%(Qr),
and ¢ € C?**(R), then

It gy 250 OO F llays + 1l @ llz4a):

2
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PROPOSITION 2.2. (The Cauchy problem for a parabolic integro-
differential equation)
Consider
(2.8) OBwu(z,t) — Lu(z,t) — Tu{z,t) = f(z,t), (z,t)€Qr

u(z,0) = ¢(z).

Assume that (2.4), (2.5) and (2.6) hold and for p > 0, az(z,t)
for (z,t) € Q. Then for ¢ € C***(R), and f € C*2(Qr), (2.8)
2+a( Qr) such that

s + || ¢ llz+a)-

>
has

unique solution u € C*+e

|y 2o < C

In both propositions, it is essential to have uniform ellipticity and
boundedness of the coefficients of the differential operator in (2.7) and
(2.8). To apply these results to our problem, we perform a change of
the variables. Let

v(z,t) = u(e®, T —1)
(1) = u®(e®, T —t)
¢(x) = ().
Then (2.2) and (2.3) are replaced by the following systems of equations,
respectively;

e (z,t) — By (z,t) + rl(x,t) =0, (x,t)€Q
(29) { (2,0) = §(2) '

(2.10) {ft(“( ))= ft)”(‘f ) +ro(z,t) =0, (z,t) €Qr
where
Biv(z,t) = (0" Bu(a,0) + {r - 5(0°)

+ / (In(1 + ) — )7 (dy)}Bev(z, 1)

+/(v(:v +In(1 + y),t) — v(z,t)
—In(1 + y)dpv(z, t))P° (dy),
Byy(z,t) = %azamv(:c,t) + (r — 1U 1o v(z, t).
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By Propositions 2.1 and 2.2, there exist unique solutions to (2.9) and
(2.10) respectively if ¢ € C?**(R). Throughout the section, we denote
by v® and v the unique solutions of (2.9) and (2.10) respectively. Now
we present the main result.

THEOREM 2.1. Assume that (Al), (A2) and (A3) hold, with (A2.1)
replacing (A2.1), ¢ € C?>**(R) and there exist bounded operators, for
1<1<k,

B Cy 240 (Qr) — Co 2 (Qr),

2 2

such that as § — 0,

B — B, - 6BY — ... — gk=1p{FY)

k
= — B®

in the operator norm. Then there exist Vo(l) € Cy +a2ta (Qr),1 <1<k,
such that

@ — B+ = BOYEY 4 gy

(2.11) e Bt(l_l)VO(l) + Bt(l)v’
and

6 _ s sl—1y0-1)
(2.12) v o= 9V . Ve Ly

in C2+a,31;—“(§;) as d — 0.

Proof. We prove by induction on k. Let

&
1) v —v
V)= .
Note that Vd(l) satisfies
)
_né (1) _ Bt — By
(2.13) (Btl B +7)Vy = ~—— v on Qr,
v\Y(z,0) = 0.

(2.14) { (8 — Be+7)Vs ) = B%w on Qr,

Vi (z,0) =0.
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Combining (2.13) and (2.14), we may rewrite as follows;

(0 = B+ (V" ~ Vi) 1
= (B] - B)(Va" ~ V{) + (B - BYvY

BS —
+ —Ljﬁ - B,g”) v(z,t) on Qr

é
v (z,0) - V{(z,0) = 0.
By Proposition 2.2,
1V =V llppqzze < C 1B = BOVE = Vi) llog

+ C (B! = BOVEY s
+ C | (Eg%.% -

Examining the proof of Proposition 2.2 carefully, it is not hard to see that
C is independent of d under our conditions. This proves the assertion
for kK = 1. Following the induction hypothesis, we suppose that there
exist V{1 <1<k — 1, satisfying (2.11) and (2.12). Let

y =D _yd-»

B la,s -

Note that for 1 <l <k —1,
V(l) _ v — v — (Wo(l) = 51—11/0(34)
I 3 ,

and
55— By (B - B.—oBM) v

8 (1)
(@ T r) K 5 + 5
+ N
(Bt(; ~ By — (SBt(l) e — 5[—23?—2)) Vb(l)
i ST
(2.15) N (B8 — B — 6B — -~ 6150 Y) o
| 5 .
Define
k-1 k-1
po _ Vi -wtY
’ )
L (k=1
vé_v—cSVO( R < 1VO( )‘

6k
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Let Wé(k) be the expression on the right hand side of (2.15) with &
replacing . We note that V5(k) is the unique solution satisfying

(atk— Bl +r)VP =w®  on Qr,
VP (z,0) =0,

which is given by Proposition 2.2. By Proposition 2.1, there exists
unique V) snch th
que Vy ' such that

(at _ Bt +r)‘/0(k) — Bt(l)vb(k_l) 4 Bt(Q)Vb(k_Q)
4o+ Bt(k_l)Vo(l) + Bt(k)v on Qr
V¥ (z,0) = 0.
We observe that on Qr
(O¢ — B+ ) (V(s(k) - Vo(k)>
k
= (B - B)V;" + (B] - B),Y - )
+ 5—1 (Bf _ Bt = 6Bt(1)) Vb(k_l) + .-
+ 37 (B) - B. = 6B = = 1B — ¢ B9 w.
By Proposition 2.1, we have

k k
V" = Vi Ny, 220

k k k
< CI(B = BIV oz +C || (BY - BYVY — i) |

g
_ 1 k-1
+C 167 (B = BB Vi flag +-
+C 1167 (B = B = 0B — - = 5715 — 6 B ) v |, 4
where C is again independent of 4. This completes the proof. O

REMARK. Assume that as § — 0, for any € > 0

~§
/ max{yz, (In(1 + ory))z}M — 0,
{lyl>e} Y

-5
sup/ y2V (dy) < o0,
5 J{lyl<e}

and
(0’6)2 —o? 4+ nyD‘S(dy)
6 —_—

C1.
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Then 5
EL%E —BWY

L

in the operator norm where
1
Bt(l)v = 50102(83335'11 — Opv).

If the conditions in Theorem 2.1 hold, then we have

)
vd — v , _
—— N %(1) in C2+a’2$(QT),

where
(6 — By + T)VO(l) = Bt(l)v on Qr,
v(z,0) = 0.
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