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Abstract

This paper proposes a design method of a fuzzy output feedback controller for the nonlinear systems with the
unknown time—delay. Recently, Cao et al proposed a stabilization method for the nonlinear time—delay systems
using a fuzzy controller when the time—delay is known. However, the time—delay is likely to be unknown in
practical. We represent the nonlinear systems with the unknown time—delay by Takagi—Sugeno (T-S) fuzzy
model and design the fuzzy observer and the parallel distributed compensation (PDC) law based on this observer.
By applying Lyapunov—Krasovskii theorem to the closed—loop system, the sufficient condition for the asymptotic
stability of the equilibrium point is derived and converted into the linear matrix inequality (LMD problem.
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1. Introduction

Some kind of systems, such as chemical process,
rolling mill systems and hydraulic systems, are
affected by the time—~delay in state or input and it
has been shown that the time—delay may induce
complex behaviors such as oscillations, or the
degradation of the performance. Even worse, a
small delay can destabilize some kind of systems
[5]. Therefore, the possible time—delay should be
taken into consideration in the controller design for
the nonlinear systems with the time—delay.

The systems with the time—delay can be
categorized into two groups ‘ the neutral type and
the retarded type [6]. Generalizations of the
Lyapunov method for both of the types have been
proposed. In particular, a class of quadratic
Lyapunov—Krasovskii functionals has been widely
used [10], [11]. For example, Bliman proposed a
condition of the delay—independent stability of
neutral or retarded type systems in [6]. Su et al
suggested a delay—dependent stability criterion for
a class of uncertain linear time—delay systems [9].

On the other hand, fuzzy logic has been used to
cope with the nonlinear system control problem.
Among various kinds of fuzzy methods, Takagi—
Sugeno (T—S) fuzzy system is widely accepted as a
tool for the design and the analysis of fuzzy control
systems [7].
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The applications of the T—S models to the various
kinds of nonlinear systems can be found in many
literatures [11, [3], [71, [8], [14]. In T-S fuzzy
model, the local dynamics in different state space
regions are represented by the linear models. The
overall model of the system is achieved by fuzzy

“blending” of these linear models. The T-S
fuzzy model can express a highly nonlinear
functional relation with comparatively a small
number of implications of rules [12].

Recently, T—S fuzzy control theory has been
applied to the nonlinear time—delay system control
in some literatures [11, [2], [3]. In [1], Caco et al.
proposed a fuzzy observer and parallel distributed
compensation (PDC) controller based on this
observer for the time—delay systems. Lee et al
proposed a constructive algorithm to design an
output feedback robust H_ controller for the
uncertain fuzzy dynamic system with the time-—
delayed state [2]. Recently, Zhang Yi et al. derived
the conditions for global exponential stability of
free fuzzy systems with the uncertain delays [3].

In this paper, we propose a new fuzzy controller
and a fuzzy observer for the nonlinear system with
the unknown time—delay. The advantage of the
proposed fuzzy controller and the fuzzy observer
over the reference [1] is that the proposed
observer does not require the exact information of
the time—delay. In fact, it is not easy to know or
measure the time—delay exactly. So, we assume
that the time—delay is time—varying and unknown
in this paper. In the course of stability analysis, the
sufficient condition for the asymptotic stability of
the equilibrium point is recast into the linear matrix
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inequalities (LMI) problem {13].

This paper is organized as follows. In section 2,
some preliminaries for T—S model of the nonlinear
systems with time—delay are given. The stability
analysis of the whole closed—loop system with the
proposed controlier and the observer is given in
chapter 3. The validity and the effectiveness of the
proposed method are examined through the
computer simulation in chapter 4. Finally, some
concluding remarks are presented in chapter 5.

Notations The following general notations will be
used throughout the paper. R denotes the set of
real numbers, R” denotes the »n dimensional
Euclidean space. The notation X >Y (respectively,
X>Y), where X and Y are symmetric matrices,
means that the matrix X-Y is positive semi—
definite (respectively, positive definite).
C,. =C(-r,0L,R") denotes the Banach space of
continuous vector functions mapping the interval
[-7,0] into R” with the topology of uniform
convergence. The following norms will be used: [}
refers to either the Euclidean vector norm or the
induced matrix 2—norm; (4,0 =SuP_rgso"¢(f)” stands
for the norm of a function ¢eC,, . Moreover, we
denote by C,. the set defined by
C ={peC,,: ||¢||c<v}, where v is a positive real
number.

2. Overview

T—S fuzzy system can represent a general class
of nonlinear systems. Using T—S model, we can
represent a nonlinear system with the time-—delay
as follows:

IF—THEN form
R Iz (t)isM,andz,(t)isM,,,z,)is M,
Then x(¢) = 4,x() + A,x(¢ —7) + Bu(¥f) (1)
y(#)=C,x(?)

with the initial condition
x(t,+0)=4(0), VOe[-r,0); (1,,¢)eR" xC’

where, x(f)eR" is the state vector, z=[z,,z2,...,zp]
are the measurable premise variables, R, (i=12,...,r)
is the ith fuzzy rule, ris the number of rule,
M M,,.. .M, are fuzzy sets. The time—delay
r(f)<t, is the unknown bounded time-—varying
delay in the state and it is assumed that

()< p<l (2)

that is, the derivative of the time-—varying delay
function is continuous and bounded. ()
represents a vector—valued initial continuous
function. The output of the above fuzzy system is
inferred as follows:

Input—COutput form
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30 = 3 b (ZAXO+ At -1@) +Bu() (3D

where k(z(#)) is the fuzzy basis functions such that

(et =0

L hE))20, Thm=1 @
T, (20))

with

w(20) = [TM, G, @), ¥ w,G0) >0, %) >0 ()

3. Design of fuzzy controller and observer

In [8], the authors proposed a fuzzy controller
based on the fuzzy observer. In [1], the authors
extended the results of [8] to the nonlinear
systems with the known time—delay. But, the
time—delay is likely to be unknown in practice. This
fact makes it difficult for the observer and
controller to be applied to the actual case.

In this section, therefore, a new fuzzy feedback
controller and a fuzzy observer with the estimated
time—delay are proposed. The proposed fuzzy
observer is described by following fuzzy rules :

i th observer rule :
R :Ifz,(t)isM,andz,()is M ,,---,z,(1)is M,

Then if(t) = A X+ A, 50 -7()+Bu@+ L, (1) - 3(1)
y() = C,x(t)

6
Notice that 7(¢) is the estimated time—delay, and it
can be regarded as zero if no relevant information
about the plant is available. The overall fuzzy

observer can be arranged as
#(t) = ghi (N4 x(1)+ 4,3t = 7(0) + Bu(t) + L (y(1) - 3(1))]
(7)
where, ()= gh, ()T ,3() .
In the same manner, we design the controller as
ul(t) = ‘Zl b (DK, 3(0) (8

The closed—loop system is represented by the
following augmented state equation.
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O] < -BK, x(0)
L;c(t)jt 2, 2,k (D), (Z(t)){{L C, A4-BK,-LC }[&(z)]

{Aw 0 ][x(z —1)}}
+ .
0 A, [ x¢t-7)
9

Define x—x=X, then the closed—loop systems are

arranged as

ED =33 h, @O, (NI, E@) + A £ 1)+ A E(E~T)

i=1 j=1

(10
where, &) =[x"(t) ¥"(#)]" and
~ [4-BK, BK,
A, *[ 0 4 —L‘,CJ ’ 1w
_ T4, 0] = 0 0
Ay = , Ay = 12), 13
@ liAdi O:i “@ !:* Ad: Ad,]

Now we introduce a lemma which will be used in
the proof of the following theorem.

Lemma 1 [3] Let O be any of a nxn matrix. For
any constant k>0 and any symmetric positive
matrix 7 >0, the following inequality is satisfied.

2xTstkx7'QT”1QTx+%yTTy for Vx,yeR’ (14)
|

The following theorem provides the stability
condition of the systems composed of the plant (3),
the controller (8) and the observer (7).

Theorem I Let us consider the closed—loop system
(10) composed of the plant (3), the controller (8)
and the observer (7). If there exist symmetric and
positive—definite matrices ¢ and S such that the
following matrix inequalities hold for
Vi, j €{},2,...,r}, then the equilibrium point of the
whole system is asymptotically stable in the large.

i)
4,0+ 04 + 4,574, + 4,574,

1 Qﬂ 0
— o <
o - S

(1)

ii)

2(2 +4, )Q+2Q(Z,j +Z,,)T
(Adll + Adl] - (Zdll + Zdl, )T 4Q <0
+ (Ad2l + Adz; - (ZIJ2I + Zde )T
40 -21-p)s"

, i<

(16)

proof : Let the quadratic Lyapunov—Krasovskii
functional as

V@) = £ (OPEQ) +—— ! &(0)SEo)da
-/ an

+f & (0)SE(o)do )
Obviously, there exist o, and o, such that
a el svEe <ol (18)
The time derivative of ¥V is
V=& (PN +E (OPEWD)
+l—}ﬁ—{5" (OSE@D) -1~ DE ((~0)SEE~7)

+&T()SEQ) - (1-D)ET (- 2)SE(E - 7))
=S h O O, P+ P, )
£ 267 (P, E(t~7) + 287 (t)PZdz - oY

i<jsr

*22”'(20))71,(40){5 Oy p

+4,

+P( 260 +28" OP(———— Aot Aoy ———)5(t-7)

d2t+A

+2£7 (t)P(————“i)f(t r)}+——5{2§ (OSE()

—U-DET (1-D)SE(E-T) - (1= DE" (t-DSE(-D)
(19)
Using Lemma 1, the above equation can be

upper—bounded as

V<SR O O, P+ PO+ 00PA, S A, PEW)

+ &7 (t-1)SE(E—1) + & (t-D)SE(E-F)
+¢’(r)PZﬂ,S"Zn,TPﬁ(t)}

+2 3 B (Oh (15" OU——= 44 )TP+P( 44, )]é(t)

<ysr

,-——-'—'\

= >S"( "") PE(®)

e PR “’) 0
+§T(z—r)sar—r)+: (t—r)sat—r)}
+1—_1;{2:T(t)S¢(z>—<1—f)ch(z—r)S;(t—r)

T Zdh
+¢ (t)P(

_A-HE (1-DSEC-))
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(20)
Since the derivative of the time—delay ahd that of
the estimated time—delay are bounded as in (2), we

get

VST GOV O, P+ P, + A, S 3,1 P

VP4, 874, P+2(1- ﬂ)-‘S]g(t)}

i<jsr

+2 h,(z(O)h, (Z(t)){sE O—— 4t )'1D

+P(Aij +Aji )+P(Ad1i +Adl/ )S-I(Adu +Adlj )TP
2 2 2
Ad2 +Ad2 ZdZ' +Zd2 i NT
+ Py g (T TRy 2 Gy
(ST R P SEW

21
If there exist symmetric and positive—definite
matrices P and S such that the following (22)
and (23) holds for Vi, je{l,2,...,r}, then ¥ s
negative definite.

A'P{P4, +P4,S"4, P+PA,S"4," P+1 S$<0
(22)
A,+4 +4 +4 A, +4
i P+P y Ji +P dll dlj S dli dlj TP
(——= 3 )" ( 5 )+ P( 2 S ( 3 )
A, +A A, +4,.
+ P2 > 223871 ( “’2 ‘”’)TP+1 §<0, i<j

(23)

From this fact and the Lyapunov—Krasovskii
theorem, the equilibrium point of the whole closed—
loop system is asymptotically stable in the large.
Letting Q=P"', we get the following matrix
inequalities from (22) and (23)
5 T - 1= T - -1~ T 2
A".Q+QA" +AdliS Adli +Ad2iS Adz. +_ﬂQSQ<0
(24)

(4, + )Q Q(A +4,)" (A.,,.J;Aa.,)s_. (Ad.n;Am)

— T
+ (Ad2i +Ad2]) S—l (AdZI +Ad2j) + 2
2 2 1-B

050<0, i<j

(25)

Notice that (24) and (25) is not an LMI problem:.
There is no efficient way to solve this problem.
Several methods can be found in (11, [14]. In this
paper, the pole—placement strategy together with
LMI is used to solve (24) and (25). With the pole—
placement method, the feedback gains K, and the
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observer gains L are determined for each local
plant modeling rule. Surely, the observer poles
must be located far from the imaginary axis for the
accurate observing performance. After the gains
are determined, the matrix inequalities turn into
LMI problem involving the only common matrix
O (therefore, P) and S . Finally, the conditions
(24) and (25) that the system is asymptotically
stable can be converted into (15) and (16) by
Schur complement. |

4. Example and simulation

In this section, an illustrative computer simulation
examples are provided to demonstrate the validity
of the proposed method. For the comparison
purpose, the plant used in [2] is employed.

Plant Rule i:

If x,()is M,
Then x(f) = 4,x(¢) + A, x(t —7) + Bu(t)
) =Cx(t)
where
P ={—0.1125 '—0.02} ={—0.1125 —1.527}
' | [ 1 o |

-0.0125 -0.005 -0.0125 -0.23
0 = 0 0 y Ap = 0 0 ,

1
B, =BZ=M, ¢ =c = 1.

The membership functions of the fuzzy sets are
defined as

2

_u0

Mu(x2(t))= 1 225 lf‘xz(t)|gl_5
0 otherwise

M, (x,(D)=1-M,(x, (1)

Notice that we increase the elements of the
coefficient matrices of delayed states by ten times
in order to amplify the effect of the time—delay. It
is assume that the unknown time—varying delay is

7(t) =2+ 0.5c0s(0.9¢) (26)
By the proposed design procedure, the controller
gains of (8) and the observer gains of (7) are
determined by the pole—placement method. The
desired poles of the controller and the observer are
chosen as (—4, —4.1) and (-8, —8.1), respectively.

According to the design procedures, we obtain
the following gains and Lyapunov matrices

K, =[7.9875 163800}, K,=[7.9875 14.8730],
L, =[62.9814 15.9875], L, =[61.4744 15.9875]

and
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35209 -0.7199 1.1440 0.0779

~0.7199 04921 0.1280 0.0183
€= 11440 01280 13471 00829

| 0.0779 00183 0.0829 0.0156

[ 00905 02152 -0.0527 -0.6977
G| 02152 21640 -02539 -3.5230

~0.0527 -02539 0.1121  0.8623

|—0.6977 -35230 08623 221278

The initial values of the states are set to (1, 1)
for all cases.

State

. r 5 & 7 8 E) 10
Time (sec)

Fig. 1 unforced system

Fig.1 shows the response of the unforced
system. Without the delayed states, the response of
the wunforced system is stable. However, the
delayed states destabilize the plant as can be seen.

Stare

State

5 6 7 () 9 10
Time (sec)

Fig. 3 x, and %, (7=0)

Fig. 2 and 3 show the response of the plant when

the proposed controller and observer are applied.
Assume that no information about the time—delay is
available, and 7 is just set to zero. In spite of the
effect of the time—delay at about 2 second, the
proposed method show good performance at all.

5. Discussions

In this paper, new fuzzy controller and observer
for the nonlinear systems with unknown time-—
delay have been proposed. By the Lyapunov—
Krasovskii theorem, the sufficient condition for the
equilibrium point of the closed—loop system being
asymptotically stable is derived and solved in the
formulation of LMI. It is shown that the design of
controller and observer gains of fuzzy rules
satisfying this condition can be converted into the
LMI problem. In contrast with the previous method
[1], the suggested method does not require the
exact information on the time—delay which is
usually not available.
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