Interspecies Nuclear Transfer using Bovine Oocytes Cytoplasm and Somatic Cell Nuclei from Bovine, Porcine, Mouse and Human

소, 돼지, 생쥐, 사람의 체세포와 소 난자를 이용한 이종간 핵 이식

  • 박세영 (마리아 기초의학연구소/마리아 생명공학연구소) ;
  • 김은영 (마리아 기초의학연구소/마리아 생명공학연구소) ;
  • 이영재 (마리아 기초의학연구소/마리아 생명공학연구소) ;
  • 윤지연 (마리아 기초의학연구소/마리아 생명공학연구소) ;
  • 길광수 (마리아 기초의학연구소/마리아 생명공학연구소) ;
  • 김선균 (마리아 기초의학연구소/마리아 생명공학연구소) ;
  • 이창현 (건국대학교 축산대학) ;
  • 정길생 (마리아 기초의학연구소/마리아 생명공학연구소) ;
  • 박세필 (마리아 병원)
  • Published : 2002.09.01

Abstract

This study was designed to examine the ability of the bovine (MII) oocytes cytoplasm to support several mitotic cell cycles under the direction of differentiated somatic cell nuclei of bovine, porcine, mouse and human. Bovine GV oocytes were matured in TCM-199 supplemented with 10% FBS. At 20h after IVM, recipient oocytes were stained with 5 $\mu\textrm{g}$/$m\ell$ Hoechst and their 1st polar body (PB) and MII plate were removed by enucleation micropipette under UV filter. Ear skin samples were obtained by biopsy from an adult bovine, porcine, mouse and human and cultured in 10% FBS added DMEM. Individual fibroblast was anlaysed chromosome number to confirm the specificity of species. Nuclear transferred (NT) units were produced by electrofusion of enucleated bovine oocytes with individual fibroblast. The reconstructed embryos were activated in 5 $\mu$M ionomycin for 5 min followed by 1.9 mM 6-dimethylaminopurine (DMAP) in CR1aa for 3 h. And cleaved NT embryos were cultured in CR1aa medium containing 10% FBS on monolayer of bovine cumulus cell for 8 days. Also NT embryo of 4~8 cell stage was analysed chromosome number to confirm the origin of nuclear transferred somatic cell. The rates of fusion between bovine recipient oocytes and bovine, porcine, mouse and human somatic cells were 70.2%, 70.2%, 72.4% and 63.0%, respectively. Also, their cleavage rates were 60.6%, 63.7%, 54.1% and 62.7%, respectively, there were no differences among them. in vitro development rates into morula and blastocyst were 17.5% and 4.3% in NT embryos from bovine and human fibroblasts, respectively. But NT embryos from porcine and mouse fibroblasts were blocked at 16~32-cell stage. The chromosome number in NT embryos from individual fibroblast was the same as chromosome number of individual species. These results show that bovine MII oocytes cytoplasm has the ability to support several mitotic cell cycles directed by newly introduced nuclear DNA.

본 연구는 몇 몇 포유류로부터 얻은 공여세포핵의 proliferation을 돕기 위한 수핵난자로 소 난자의 세포질을 사용하였으며, 공통 세포질로써의 능력을 시험하였다. 소 난자와 소, 사람, 돼지, 생쥐의 체세포와의 결합에서 유래한 각 종별 핵이식란의 융합율, 분할율, 배발달률 그리고 염색체 수를 조사하였다. 1. 소, 돼지, 생쥐, 사람 각각의 체세포를 이용한 핵이식란의 융합율은 70.2% 70.2% 72.4%와 63.0 %로 유의차를 보이지 않았다. 2. 소, 돼지, 생쥐, 사람 각각의 체세포를 이용한 핵이식란의 체외분할 ($\geq$2cell cleavage)율 또한 60.6%, 63.7%, 54.1%와 62.7%로 유의차가 없었다. 3. 각 종별로 체외분할이 일어난 시기를 조사한 결과 종에 관계없이 대체로 활성화 처리 후 24시간째에 대부분 일어나는 것을 볼 수 있었다. 그러나 점차적으로 분할이 계속 이루어지면서 발달시기가 종 특이적인 특성을 나타내는 것을 볼 수 있었다. 4. 이종간 핵이식의 후기 배발달 (상실배와 배반포) 률을 살펴보면 소와 사람의 체세포를 사용했을 경우 17.5%, 4.3%의 결과를 나타내었으며, 돼지와 생쥐의 체세포를 사용한 경우 16세 포기 이후 단계에 발달중지 현상을 볼 수 있었다. 5. 4~8 세포기 정도의 각 종별 핵이식란 할구를 분석에 사용하였을 때, 공여핵으로 사용된 종의 염색체 수와 일치하는 결과를 볼 수 있었다. 이상의 결과를 종합해 볼 때 성숙한 소 난자의 세포질은 소뿐만 아니라 돼지, 생쥐, 사람과 같은 다양한 포유류의 핵을 사용하여 핵이식을 하였을 때에도 발달이 가능하다는 것을 보여주고 있다.

Keywords

References

  1. Briggs, R. and King, T. J. 1952. Transplantation of living cell nuclei from blastula cells into enucleated frog's eggs. Proc. Natl. Acad. Sci., USA. 38:455-463 https://doi.org/10.1073/pnas.38.5.455
  2. Campbell, K. H. S., McWhir, J. and Ritchie, W. A. 1996. Wilmut I. Sheep cloned by nuclear transfer from a cultured cell line. Nature, 380:64-66 https://doi.org/10.1038/380064a0
  3. Cheong, H., Takahashi, Y. and Kanagawa, H. 1993. Birth of mice after transplantation of early cell-cycle-stage embryonic nuclei into enucleated oocytes. Biol. Reprod., 48:958-963 https://doi.org/10.1095/biolreprod48.5.958
  4. Crosby, I. M., Gandolfi, F. and Moor, R. M. 1988. Control of protein synthesis during early cleavage of sheep embryos. J. Reprod. Fertil., 82:769-775 https://doi.org/10.1530/jrf.0.0820769
  5. Cibelli, J. B., Stice, S. L., Golueke, P. J., Kane, J. J., Jerry, J., Blackwell, C., Poncede Leon, A. and Robl, J. M. 1998. Cloned transgene calves produced from non quiescent fetal fibroblasts. Science, 280:1256-1258 https://doi.org/10.1126/science.280.5367.1256
  6. Dominko, T., Mitalipova, M., Haley, B., Beyhan, Z., Memili, E, McKusick, B. and First, N. L. 1999. Bovine oocytes cytoplsm supports development of embryos produced by nuclear transfer of somatic cell nuclei from various mammalian species. Biol. Reprod., 60:1496-1502 https://doi.org/10.1095/biolreprod60.6.1496
  7. Keefer, C. L., Stice, S. L. and Matthews, D. L. 1994. Bovine inner cell mass as donor nuclei in the production of nuclear transfer embryos and calves. Biol. Reprod., 50:935-939 https://doi.org/10.1095/biolreprod50.4.935
  8. Mccarthy, J. and Solter, D. 1983. Nuclear transplantation in mouse embryo by microsurgery and cell fusion. Science, 220: 1300-1302
  9. McKinnell, R. G. 1962. Intraspecific nuclear transplantation in frogs. J. Hered., 53: 100-207 https://doi.org/10.1093/oxfordjournals.jhered.a107133
  10. Prather, R. S., Barns, F. L., Sims, M. M., Robl, J. M., Eyestone, W. H. and First, N. L. 1987. Nuclear transplantation in bovine embryo: assessment of donor nuclei and recipient oocyte. Biol. Reprod., 37:859-866 https://doi.org/10.1095/biolreprod37.4.859
  11. Prather, R. S., Sims, M. M. and First, N. L. 1989. Nuclear transplantation in early pig embryos. Biol. Reprod., 41:414-418 https://doi.org/10.1095/biolreprod41.3.414
  12. Robertson, D. 1997. 'Gene,' another landmark in farmyard cloning. Nat. Biotechnol., 1997. 15:833
  13. Schnieke, A. E., Kind, A. J., Ritchie, W. A., Mycock, K., Scott, A. R., Ritchie, M., Wilmut, I. Colman, A. and Campbell, K. H. S. 1997. Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science, 278:2130-2133
  14. Sims, M. M. and First, N. L. 1994. Production of fetuses from totipotent cultured bovine inner cell mass cells. Proc. Natl. Acad. Sci., USA. 60:6143-6147
  15. Stice, S. L. and Robl, J. M. 1988. Nuclear reprogramming in nuclear transplantation in rabbit embryos. Biol. Reprod., 39:657-664 https://doi.org/10.1095/biolreprod39.3.657
  16. Telford, N. A., Watson, A. J. and Schultz. G. A. 1990. Transition from the maternal to embryonic control in early mammalian development: a comparison of several species. Mol. Reprod. Dev., 26:90-100
  17. Wakayama, T., Perry, A. C. F., Zuccotti, M., Johnson, K. R. and Yanagimachi, R. 1998. Full-term development of mice from cnucleated oocytes injected with cumulus cell nuclei. Nature, 394:369-374 https://doi.org/10.1038/28615
  18. Wells, D. N., Misica, P. M., Day, A. M. and Tervit, H. R. 1997. Production of cloned lambs from an established embryonic cell line: A comparison between in vivo- and in vitro-matured cytoplasts. Biol. Reprod., 57:385-393 https://doi.org/10.1095/biolreprod57.2.385
  19. Willadson, S. M. 1986. Nuclear transplantation in sheep embryos. Nature, 320:63-65 https://doi.org/10.1038/320063a0
  20. Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J. and Campbell, K. H. S. 1997. Viable off-spring derived from fetal and adult mammalian cells. Nature, 385:810-813 https://doi.org/10.1038/385810a0