On the Biological Functions of Equine Chorionic Gonadotropin

말의 융모성 성선자극 호르몬의 생화학적 기능

  • 민관식 (한경대학교 동물생명자원학과) ;
  • 윤종택 (한경대학교 생물·정보통신전문대학원)
  • Published : 2002.09.01

Abstract

In horse, a single gene encodes both eCG and eLH $\beta$ subunits. The difference between eCG and eLH lies in the structure of their glycoresidues, which are both sialylated and sulfated in LH and sialylated in CG eCG consists of highly glycosyiated $\alpha$- and $\beta$-subunits and is an unique member of the gonadotropin family because it elicits response characteristics of both FSH and LH in other species than the horse. This dual activity of eCG in heterologous species is of fundamental interest to the study of gonadotropin structure-function relationships and the understanding of the molecular bases of the specific interactions of these hormones with their receptors. Thus, eCG is a dintinct molecule from the view points of its biological function and glycoresidue structures. The oligosaccharide at Asn 56 of the $\alpha$-subunit plays an indispensable role, whereas the carboxyl-terminal extension of the eCG $\beta$-subunit with its associated O-linked oligosaccharides is not improtant for, the in vitro LH-like activity of eCG. In contrast, both N- and O-linked oligosaccharides play important roles for FSH-like activity and increase FSH-like activity by removal of N- and O-linked oligosaccharides. Therefore, the dual LH- and FSH-like activities of eCG can be clearly separated by removal of either the N-linked oligosaccharide on the $\alpha$-subunit or CTP-associated O-linked oligosaccharides from its $\beta$-subunit. The glycoresidues seem to play crucial roles fer biological activities. The tethered-eCG was effciently secreted and showed similar LH-like activity to the dimeric eCG $\alpha$/ $\beta$ and native eCG. FSH-like activity of the tethered-eCG was also shown similarly in comparison with the native and wild type eCG $\alpha$/ $\beta$. Our data for the first time suggest that the tethered-eCG can be expressed efficiently and the produced product by the CHO-Kl cells is fully LH- and FSH-like activities in rat in vitro bioassay system. Our results also suggest that this molecular can imply particular models ot FSH-like activity not LH-like activity in the eCG. Taken together, these data indicate that the constructs of tethered molecule will be useful in the study of mutants that affect subunit association and/or secretion.

eCG(말 융모성성선자극 호르몬)$\beta$와 eLH(말 황체형성호르몬)$\beta$는 하나의 유전자로 코드 되어 있으며, eCG와 eLH는 당쇄의 구조에 있어서 차이가 있는데, LH는 sulfate가 CG는 sialylate가 수식되어 있다. eCG는 다른 동물에 있어서 강력한 FSH (난포자극)와 LH의 이중활성을 나타내어 아주 특이하고, 많은 탄수화물로 수식되어 있는 당단백질 호르몬이다. eCG의 이러한 이중활성은 성선 자극호르몬의 구조, 기능 및 수용체와 이들 호르몬과의 특이결합에 대하여 분자 생물학적인 관점에서 연구하는데 아주 흥미롭다 따라서, eCG는 당쇄의 구조와 생화학적인 기능에서 아주 특이한 분자이다. 이러한 중요점을 당쇄첨가부위의 돌연변이를 통하여 분석한 결과, LH의 활성에서는 eCG$\alpha$의 56번 당쇄가 필수불가결한 역할을 하지만, eCG$\beta$의 카르복실기 말단의 O-linked 당쇄는 중요하지 않은 것으로 관찰되었다. 한편, N- 및 O-linked 당쇄 모두는 FSH활성에는 중요한 기능을 가지고 있는데, 양쪽 당쇄의 제거는 오히려 FSH 활성을 증가시켰다. 따라서, eCG의 LH와 FSH의 이중활성은 $\alpha$의 N-linked 당쇄의 제거와, $\beta$의 O-linked 당쇄를 제거함으로써 완전히 분리할 수 있으며, eCG에 있어서 당쇄는 생화학적 활성에 대하여 아주 중요하게 작용한다는 새로운 사실이 밝혀졌다. 단일체인 eCG($\beta$의 C-terminal에 u를 연결한)도 eCG$\alpha$/$\beta$ 및 천연형 eCG와 비교한 결과 효율적으로 분비되어지고 완전한 LH와 FSH 활성을 나타내었다. 이러한 결과들은 eCG 분자에 있어서 지금까지 문제시되어왔던 LH활성을 나타내지 않고, 높은 FSH 활성만을 나타내는 특이한 모델을 만들 수가 있으며, 현재 단일체인 분자에 있어서 당쇄의 기능에 대한구축은 각 단체의 결합, 분비에 영향을 미치는 당쇄 돌연변이 연구에 아주 유용할 것으로 사료된다.

Keywords

References

  1. Apparwal, B. B. and Papkoff, H. 1981. Relationship of sialic acid residues to in vitro biological and immunological activities of equine gonadotropin. Biol. Reprod., 24:1082-1087
  2. Bielinska, M., Matzuk, M. M. and Boime, I. 1989. Site-specific processing of the N-linked oligosaccharides of the human chorionic gonadotropin ${\alpha}$-subunit. J. Biol. Chem., 264:17113-17118
  3. Bousfield, G. R., Baker, V. L. and Clem, D. M. 1992. Comparision of the O-glycosylation of eLH and eCG beta subunits. The endocrine society, p1200
  4. Calvo, F. O., Keutmann, H. T., Berger, E. R. and Ryan, R. J. 1986. Deglycosylated human follitropin; Characterization and effects on adenosine cyclic 3', 5'-phosphate production in porcine granulosa cells. Biochemistry, 25:3938-3943 https://doi.org/10.1021/bi00361a030
  5. Chen, W. and Bahl, O. P. 1991. Recombinant carbohydrate variant of human choriogonadotropin ${\beta}$ -subunit (hCG ${\beta}$) descarboxyl terminus (115-145). Expression and characterization of carboxyl-terminal deletion mutant of hCG ${\beta}$ in the baculovirus system. J. Biol. Chem., 266:6246-6251
  6. Chen, F. and Puett, D. J. 1991. Delineation via site-directed mutagenesis of the carboxyl-terminal region of human choriogonadotropin ${\beta}$ required for subunit assembly and biological activity. J. Biol. Chem., 266:6904-6908
  7. Crawford, R. J., Tregear, G. W. and Niall, H. D. 1986. The nucleotide sequences of baboon chorionic gonadotropin ${\beta}$-subunit genes have diverged from the human. Gene, 46:161-169 https://doi.org/10.1016/0378-1119(86)90400-2
  8. Furuhashi, M., Shikone, T., Farest, F. A., Sugahara, T., Hsueh, A. J. W. and Boime, I. 1995. Fusing the carboxyl-terminal peptide of the chorionic gonadotropin (CG) ${\beta}$-subunit to the common ${\alpha}$-subunit: retension of O-linked glycosylation and enhanced in vitro bioactivity of chimeric human CG. Mol. Endocrinol., 9:54-63
  9. Huang, J, Chen, F. and Puett, D. 1993. Amino/carboxyl-terminal deletion mutants of humanchoriogonadotropin ${\beta}$. J. Biol. Chem., 268:9311-9315
  10. Matzuk, M. M., Hsueh, A. J. W., Lapolt, P.,Tsafriri, A., Keene, J. L. and Boime, I. 1990. The biological role of the carboxyl-terminal extension of human chorionic gonadotropin ${\beta}$-subunit. Endocrinology, 126:376-383 https://doi.org/10.1210/endo-126-1-376
  11. Matzuk, M. M., Keene, J. L. and Boime, I. 1989. Site specificity of the chorionic gonadotropin N-linked oligosaccharides in signal transduction. J. Biol. Chem., 264:2409-2414
  12. Min, K. S. 1999. Functional expression of lutropin/choriogonadotropin and follitropin receptor cDNAs in 293 cells. Korean J. Animal Reprod., 23:347-352
  13. Min, K. S. 2000a. Function of constitutively activating lutropin/choriogonadotropin receptor. Korean J. Animal Reprod., 24:41-47
  14. Min, K. S. 2000b. On the secretion and functions of equine chorionic gonadotropin. Review. Korean J. Animal Reprod., 24:125-142
  15. Min, K. S. 2000c. Biological functions of N- and O-linked oligosaccharides of equine chorionic gonadotropin and lutropin/chorionic gonadotropin receptor. Korean J. Animal Reprod., 24: 357-364
  16. Min, K. S. 2000d. Differential expression of glycoprotein hormones in equine placenta and pituitary. Dev. Reprod., 4:87-93
  17. Min, K. S. 2001. Biosynthesis of a biological active single chain equine chorionic gonadotropin. J. Life. Science, 11:103-107
  18. Min, K. S., Hattori, N., Aikawa, J. I., Shiota, K. and Ogawa, T. 1996. Site-directed mutagenesis of recombinant equine chorionic gonadotropin/luteinizing hormone: differential role of oligosaccharides in luteinizing hormone- and follicle -stimulaiting hormone-like activities. Endocrine J., 43:585-593 https://doi.org/10.1507/endocrj.43.585
  19. Min, K. S., Liu, X., Fabritz, J., Jaquette, J., Abell, A. M. and Ascoli, M. 1998. Mutations that induce constitutive activation and mutations that impair signal transduction modulate the basal and/or agonist-stimulated internalization of the lutropin/choriogonadotropin receptor. JBC, 273:34911-34919
  20. Min, K. S., Shinozaki, M., Miyazawa, K., Nishimura, R., Sasaki, N., Shiota, K. and Ogawa, T. 1994. Nucleotide sequence of eCG ${\alpha}$-subunit cDNA and its expression in the equine placenta. J. Reprod. Dev., 40:301-305 https://doi.org/10.1262/jrd.40.301
  21. Min, K. S., Shiota, K., Saneyoshi, T., Hirosawa, M. and Ogawa, T. 1997. Differential role of oligosacchairdes in equine chorionic gonadotropin (eCG)/luteinizing hormone (LH) to express follicle stimulating hormone (FSH) -like and LH-like activities. J Reproduction and Development, 43:177-179
  22. Miyazaki, J. I., Takaki, S., Araki, S., Tashiro, F., Tominaga, A., Takatsu, K. and Yamamura, K. 1989. Expression vector system based on the chicken ${|beta}$-actin promoter directs efficient production of interleukin-5. Gene, 79:269-277
  23. More, W. T. and Ward, D. N. 1980. Pregnant mare serum gonadotropin; An in vitro biological characterization of the lutropin-follitropin dual activity. J. Biol. Chem., 255:6930-6936
  24. Narayan, P., Wu, C. and Puett, D. 1995. Functional expression of yoked human chorionic gonadotropin in baculovirus-infected insect cells. Mol. Endocrinol., 9:1720-1726
  25. Niwa, H., Yamamura, K. I. and Miyazaki, J. I. 1991. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene, 108:193-200 https://doi.org/10.1016/0378-1119(91)90434-D
  26. Pierce, J. G and Parsons, T. F. 1981. Glycoprotein hormones: structure and function. Annu. Rev. Biochem., 50:465-490 https://doi.org/10.1146/annurev.bi.50.070181.002341
  27. Sairam, M. R. and Bhargavi, G. N. 1985. A role for glycosylation of the ${\alpha}$ subunit in transduction of biological signal in glycoprotein hormones. Science, 229:65-67 https://doi.org/10.1126/science.2990039
  28. Saneyoshi, T., Min, K. S., Ma, X. J., Nambo, Y., Hiyama, T., Tanaka, T. and Shiota, T. Equine follicle-stimulating hormone: Molecular cloning of ${\beta}$-subunit and biological role of the asparagines-Iinked oligosaccharide at asparagine 56 of ${\alpha}$-subunit. Biology of Reproduction. 65: 1686-1690 https://doi.org/10.1095/biolreprod65.6.1686
  29. Sugahara. T., Pixley, M. R., Minami, S., Perlas, E., Ben-Menahem, D., Hsueh, A. J. W. and Boime, I. 1995. Biosynthesis of a biologically active single peptide chain containing the human common ${\alpha}$ and chorionic gonadotropin ${\beta}$ subunits in tandem. Proc. Natl. Acad. Sci., USA. 92:2041-2045
  30. Sugahara, T., Sato, A., Kudo, M., Ben-Menahem, D., Pixley, M. R., Hsueh, A. J. W. and Boime, I. 1996. Expression of biologically active fusion genes encoding the common alpha subunit and the follicle-stimulating hormone beta. Role of a linker suquence. J. Biol. Chem., 271:10445-10448
  31. Sugino, H., Bousfield, G. R., Moore, W. T. and Ward, D. N. 1987. Structural studies on equine glycoprotein hormones. Amino acid sequence of equine chorionic gonadotropin ${\beta}$-subunit. J. Biol. Chem., 262:8603-8609