Study on Hindered Diffusion of Single Polyelectrolyte Chain in Micro-Pores by Employing Brownian Dynamics Simulations

브라운 동력학 시뮬레이션에 의한 미세기공에서 단일한 다가전해질 사슬의 제한확산 연구

  • 전명석 (한국과학기술연구원 Complex Fluids and Membrane 연구팀) ;
  • 곽현욱 (한국과학기술연구원 Complex Fluids and Membrane 연구팀)
  • Published : 2002.12.01

Abstract

The hindered diffusion in confined spaces is an important phenomenon to understand in a micro-scale the filtration mechanism determined by the particle motion in membrane pores. Compared to the case of spherical colloids, both the theoretical investigations and the experiments on the hindered diffusion of polyelectrolytes is actually more difficult, due to lots of relevant parameters resulting from the complicated conformational properties of the polyelectrolyte chain. We have successfully performed the Brownian dynamics simulations upon a single polyeiectrolyte confined in a slit-like pore, where a coarse-grained bead-spring model incorporated with Debye-Huckel interaction is properly adopted. For the given sizes of both the polyelectrolyte and the pore width, the hindered diffusion coefficient decreases as the solution ionic concentration decreases. It is evident that a charge effect of the pore wall enhances the hindered diffusion of polyelectrolyte. Simulation results allow us to make sense of the diffusive transport through the micro-pore, which is restricted by the influences of the steric hindrance of polyelectrolytes as well as the electrostatic repulsion between the polyelectrolytes and pore wall.

한정된 미세공간에서의 제한확산(hindered diffusion)은 멤브레인 기공(pore)에서 입자들의 운동에 의해 결정되는 여과 메카니즘을 매우 미세한 수준에서 이해하는데 중요한 현상이다. 구형(spherical) 콜로이드 입자에 비해 보다 복잡한 형태(conformation)인 고분자사슬 구조를 갖는 다가전해질(polyelectrolyte)의 제한확산 거동에는 다양한 인자들이 관련되어 있기 때문에, 이론 접근은 물론 실험적 접근도 한층 어려운 것이 사실이다. 본 연구에서는, 슬릿형 미세기공에 한정되어 있는 단일한 다가전해질(single polyelectrolyte)에 coarse-grained bead spring model과 먼거리(long-range) 정전상호작용(electrostatic interaction)인 Debye-Huckel potential을 적용하여 분자시뮬레이션 기법인 브라운 동력학 모사를 수행하였다. 기공과 다가전해질 사슬(Polyelectrolyte chain)의 주어진 크기에서, 용액의 전해질 이온농도가 감소함에 따른 사슬의 신장(extension)효과는 제한확산계수를 감소시켰고, 기공 벽면의 하전성은 제한확산계수를 더욱 감소시켰다. 이는, 다가전해질 사슬(polyelectrolyte chain)의 입체적 장애(steric hindrance)와 함께 정전반발력이 미세기공에서의 확산이동을 억제함을 의미한다.

Keywords

References

  1. J. Membrane Sci. v.19 Theoretical effects of macromolecule concentration and charge on membrane rejection coefficients B. D. Mitchell;W.M. Deen https://doi.org/10.1016/S0376-7388(00)80171-4
  2. AlChE J. v.33 Hindered transport of large molecules in liquid-filled pores W. M. Deen https://doi.org/10.1002/aic.690330902
  3. Trans. Int. Chem. Eng. v.74 Proteins transport through charged porous membranes C. Causserand;M. Meireles;P. Aimar
  4. J. Membrane Sci. v.68 Dextran transport through asymmetric ultrafiltration membranes: comparison with hydrodynamic models S. Mochizuki;A. L. Zydney https://doi.org/10.1016/0376-7388(92)80147-C
  5. Colloidal Dispersions W. B. Russel;D. A. Saville;W. R. Schowalter
  6. J. Colloid Interface Sci. v.58 The constrained Brownian movement of spherical particles in cylindrical pores of comparable radius H. Brenner;L. J. Gaydos https://doi.org/10.1016/0021-9797(77)90147-3
  7. Chem. Eng. Sci. v.38 Hindered diffusion of asphaltenes through microporous membranes R. E. Baltus;J. L. Anderson https://doi.org/10.1016/0009-2509(83)80099-2
  8. J. Colloid Interface Sci. v.153 Charge effects on the diffusion of polystyrene sulfonate through porous membranes N. P. Lin;W. M. Deen https://doi.org/10.1016/0021-9797(92)90339-N
  9. Ind. Eng. Chem. Res. v.33 Hindered Brownian diffusion of spherical solutes within circular cylindrical pores J. M. Nitsche;G. Balgi https://doi.org/10.1021/ie00033a030
  10. Ind. Eng. Chem. Res. v.32 Hindered diffusion in slit pores: and analytical result Y. Pawar;J. L. Anderson https://doi.org/10.1021/ie00016a023
  11. Hwahak Konghak v.36 Theoretical Prediction on the Hindered Diffusion of Colloidal Particles Within Narrow Spaces of Membrane Pores M.-S. Chun
  12. Macromolecular Theory Simulations v.8 Computer simulation study on the concentration distribution of spherical colloids within confined spaces of well-defined pores M.-S. Chun https://doi.org/10.1002/(SICI)1521-3919(19990901)8:5<418::AID-MATS418>3.0.CO;2-0
  13. J. Membrane Sci. v.47 Hindered transport through micropores with adsorbed polyelectrolytes J. T. Kim;J. L. Anderson https://doi.org/10.1016/S0376-7388(00)80866-2
  14. Elsevier Molecular simulation of fluids: theory, algorithms and object-orientation R. J. Sadus
  15. Biochimica et Biophysica Acta v.1463 Conformation and dynamic properties of a saturated gydrocarbon chain confined in a model membrane: a Brownian dynamics simulation M. X. Fernandes;M. L. Huertas;M. A. R. B. Castanho;J. G. Torre https://doi.org/10.1016/S0005-2736(99)00188-1
  16. J. Non-Newtonian Fluid Mech. v.82 Brownian dynamics simulations of the stress and molecular conficuration of polymers in exponential and linearly-ramped shear flow T. C. B. Kwan;E. S. G. Shaqfeh https://doi.org/10.1016/S0377-0257(98)00168-2
  17. Dynamics of Polymeric Liquids v.2 R. B. Bird;C. F. Curtiss;R. C. Armstrong;O. Hassager
  18. J. Chem. Phys. v.69 Brownian dynamics with hydrodynamics interactions D. L. Ermak;J. A. McCammon https://doi.org/10.1063/1.436761
  19. J. Comp. Phys. v.136 A combined wormlike-chain and bead model for dynamic solutions of long linear DNA H. Jian;A. V. Vologodskii;T. Schlick https://doi.org/10.1006/jcph.1997.5765