콘포컬 레이저 현미경을 이용한 불연속면의 거칠기 측정 연구

A Study of Roughness Measurement of Rock Discontinuities Using a Confocal Laser Scanning Microscope


초록

새롭게 개발된 레이저 콘포컬 현미경을 이용해 암석 불연속면의 거칠기를 측정하였다. 레이저의 파장은 488 nm이며, 현미경은 두 개의 galvano-meter scanner mirror를 이용한 광 편광법에 의해 제어된다. 레이저 반사를 통한 자동 초점기능은 관찰대상을 빠르고 정확하게 측정할 수 있다. 이 현미경은 기존의 다른 콘포컬 현미경에 비해 광축방향의 해상도를 크게 개선하였고, 특수 제작한 현미경 스테이지를 이용해 최대 $10{\;}{\times}{\;}10{\;}cm$ 까지 크기의 시료를 측정할 수 있다. 측정간격은 x와 y 방향으로 $2.5{\;}\mu\textrm{m}$씩이며, z방향의 최대 측정해상도는 $10{\;}\mu\textrm{m}$로서, 다른 방범에 비해 훨씬 정확하다. 조립질과 세립질의 입도가 다른 화강암을 대상으로 인장시험(Brazilian test)를 통해 인공절리를 생성시켰고, 생성된 좌우의 절리면에 각각 3개씩의 측선을 설정하였다. 각 측선을 따라 측정한 높이는 1차원은 물론 거칠기의 세밀한 양상을 보여주는 2차원과 3차원의 디지털 이미지로 표현된다. 조립질 화강암의 1차원 단면은 세립질보다 불연속면의 기복이 더 심함을 잘 보여준다. 거칠기를 정량적으로 특성화하고 거칠기를 구성하는 성분 중 가장 큰 영향을 미치는 성분을 파악하기 위해 고속퓨리에 변환 (FFT)를 이용한 스펙트럼 분석을 실시하였다. 스펙트럼 분석결과 저주파 성분이 큰 시효의 경우 거칠기의 기복변화가 심하고 긴 파장을 나타내는 경향이 있음을 구명하였다.

Fracture roughness of rock specimens is observed by a new confocal laser scanning microscope (CLSM; Olympus OLS1100). The wave length of laser is 488 nm, and the laser scanning is managed by a light polarization method using two galvano-meter scanner mirrors. The function of laser reflection auto-focusing enables us to measure line data fast and precisely. The system improves resolution in the light axis (namely z) direction because of the confocal optics. Using the CLSM, it is Possible to measure a specimen of the size up to $10{\;}{\times}{\;}10{\;}cm$ which is fixed on a specially designed stage. A sampling is managed in a spacing $2.5{\;}\mu\textrm{m}$ along x and y directions. The highest measurement resolution of z direction is $10{\;}\mu\textrm{m}$, which is more accurate than other methods. Core specimens of coarse and fine grained granite are provided. Fractures are artificially maneuvered by a Brazilian test method. Measurements are performed along three scan lines on each fracture surface. The measured data are represented as 2-D and 3-D digital images showing detailed features of roughness. Line profiles of the coarse granites represent more frequent change of undulation than those of the fine granite. Spectral analyses by the fast Fourier transform (FFT) are performed to characterize the roughness data quantitatively and to identify influential frequency of roughness. The FFT results suggest that a specimen loaded by large and low frequency energy tends to have high values of undulation change and large wave length of fracture roughness.

키워드

참고문헌

  1. Geophy. Res. Lett. v.18 Solute transport in fracture channel and parallel plate models Berkowitz, B.;Braester, C. https://doi.org/10.1029/91GL00215
  2. J. Geophysical Research v.100 Simple mathematical model of a rough fracture Brown, S.R. https://doi.org/10.1029/94JB03262
  3. J. Geophysical Research v.90 Broad bandwidth sutdy of the topography of natural rock surfaces Brown, S.R.;Scholz, S.H. https://doi.org/10.1029/JB090iB14p12575
  4. Computers and Geosciences v.27 A new computer-controlled surface-scanning device for measurement of fracture sufrace roughness Develi, K.;Babadagli, T.;Comlekci, C. https://doi.org/10.1016/S0098-3004(00)00083-2
  5. Int. J. Rock Mech. Min. Sci. and Geomech. Abstr. v.30 PEAK : Anew kind of surface microscope Durham, W.B.;Bonner, B. P. https://doi.org/10.1016/0148-9062(93)90008-2
  6. Proc. 28th U.S. Symp. Rock Mechanics, Tuscon Comparison of coupled fracture deformation and fluid models with direct measurements of fracture pore structure and stress-flow properties Gale, J.
  7. Rock Mech. Rock Eng. v.22 Laboratory testing of the voids of a fracture Gentier, S.D.;Billaux, D.;van Vliet, L. https://doi.org/10.1007/BF01583959
  8. J. Soil Sci. Soc. Am. v.52 A non-contact laser system for measuring soil surface topography Huang C.;White, I.;Thwaite, E. G.;Bendeli, A. https://doi.org/10.2136/sssaj1988.03615995005200020009x
  9. Int. J. Rock Mech. Min. Sci & Geomech. Abstr v.15 International Society for Rock Mechanics Commission on Standardization of Laboratory and Field Tests https://doi.org/10.1016/0148-9062(78)91472-9
  10. J. Soc. Material Sci. Japan v.43 An experimental study on damage propagation of intact granite Jeong, G.C.;Ichikawa, Y. https://doi.org/10.2472/jsms.43.317
  11. The anisotropy of surface roughness measured using a digital photogrammetric technique v.92 Jesselle, M.W.;Cox, S.J.D.;Schwarze, P.;Power, W.
  12. Rev. Sci. Instrument v.56 Automatic, digital system for profiling rough surfaces Keller, K.;Bonner, B.P. https://doi.org/10.1063/1.1138299
  13. Physical Review B v.33 Fractal sandstone pores: automated measurements using scanning-electron-microscope images Krohn, C.E.;Thompson, A. H. https://doi.org/10.1103/PhysRevB.33.6366
  14. Ints. J. Rock Mech. Min. Sci. and Geomech. Abstr. v.32 New peak shear strength criteria for anisotropic rock joints Kulatilake, P. H. S. W.;Shou, G.;Huang, T. H.;Morgan, R. M. https://doi.org/10.1016/0148-9062(95)00022-9
  15. Int. J. Rock Mech. Min. Sci. and Geomech.Abstr. v.27 The fractal dimension as a measure of the roughness of rock discontinuity profiles Lee, Y. H.;Carr, J. R.;Barr, D.J.;Haas, C. J. https://doi.org/10.1016/0148-9062(90)90998-H
  16. J. Geochemical Exploration v.69-70 Quantification of fluid flow: hydro-mechanical behaviour of different natural rough fractures Lespinasse, M.;Sausse, J. https://doi.org/10.1016/S0375-6742(00)00111-4
  17. Int. J. Rock Mech. Min. Sci. and Geomech. Abstr. v.27 Joint roughness measurement using shadow profilometry Maerz, N.H.;Franklin, J.A.;Bennett, C. P.
  18. J. Contaminant Hydrology v.46 Experimental study of the transport properties of rough self-affine fractures Plouraboue, F.;Kurowski, P.;Boffa, J.-M.;Hulin J.-P.;Roux, S. https://doi.org/10.1016/S0169-7722(00)00134-0
  19. Int. J. Rock Mech. Min. Sci. v.34 Topography of natural and artificial fractures in granitic rocks: implications for studies of rock friction and fluid migration Power, W.L.;Durham, W. B. https://doi.org/10.1016/S1365-1609(97)80007-X
  20. Geophysical Research Letters v.14 Roughness of natural fault surfaces Power, W. L;Tullis, T.E.;Brown, S. R.;Biornott, G. N.;Scholz, C.H. https://doi.org/10.1029/GL014i001p00029
  21. Water Resources Research v.22 Radionuclide transport in fast channels in crystalline rock Rasmuson, A.;Neretnieks, I. https://doi.org/10.1029/WR022i008p01247
  22. J. Geophysical Research v.100 no.B4 Scaling invariance of crack surfaces Schmittbuhl, J.;Schmitt, F.;Scholz, C. https://doi.org/10.1029/94JB02885
  23. Engineering Geology v.63 Microscopic observation and contact stress analysis of granite under compression Seo, Y.S.;Jeong, G. C.;Kim, J. S.;Ichikawa, Y. https://doi.org/10.1016/S0013-7952(01)00086-2
  24. Int. J. Rock Mech. and Min. Sci. Geomech. Abstr. v.13 Development of stress induced microcracks in Westerly granite Tapponnier, P.;Brace, W. F. https://doi.org/10.1016/0148-9062(76)91937-9
  25. Water Resources Research v.23 Channel model of flow through fractured media Tsang, Y. W.;Tsang, C. F. https://doi.org/10.1029/WR023i003p00467
  26. Water Resources Research v.24 Flow and tracer transport in fractured media: A variable aperture channel model and its properties Tsang, Y. W.;Tsang, C. F.;Neretnieks, I.;Moreno. L. https://doi.org/10.1029/WR024i012p02049