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Identification of the Distribution Function of the Preisach
Model using Inverse Algorithm

Chang Seop Koh* and Jae Seop Ryu*

Abstract - A new identification algorithm for the Preisach model is presented. The algorithm treats
the identification procedure of the Preisach model as an inverse problem where the independent vari-
ables are parameters of the distribution function and the objective function is constructed using only
the initial magnetization curve or only the major loop of the hysteresis curve as well as the whole re-
versal curves. To parameterize the distribution function, the Bezier spline and Gaussian function are
used for the coercive and interaction fields axes, respectively. The presented algorithm is applied to the
ferrite permanent magnets, and the distribution functions are correctly found from the major loop of
the hysteresis curve or the initial magnetization curve.
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1. Introduction

With a view to more accurate magnetic field analysis,
the development of an algorithm for hysteresis modeling
becomes a major research topic [1-5]. The Preisach model,
one of the phenomenological hysteresis models, is being
widely applied to the modeling of the anisotropic magnetic
materials. The model, for example, is adopted to analyze
the distribution of the residual magnetic flux density of the
permanent magnet for the BLDC motor [2], and used to
calculate the iron loss of the electric machine [6]. For the
Preisach model to be used in practical applications, the dis-
tribution function of the material with which the hysteretic
behavior is concerned should be determined [7,8]. The dis-
tribution function is, generally, determined using the meas-
ured data, and this procedure is called the identification of
the Preisach model.

In the conventional identification method, the Everett
function values are first computed from the measured re-
versal curves and then the distribution function values are
calculated [2,7,8]. This method is generally considered the
most dependable method, at least theoretically, because it
adopts the measured data directly, but it requires a lot of
time and difficulty for the measurement of the reversal
curves [4,8,9]. Furthermore, when the reversal curves are
not very accurately measured, this method supplies nega-
tive values of the distribution function, which is physically
unacceptable. Usually, to remove these negative attributes,
the measured data is modified manually [9]. However,
proper modification of the measured data is very time con-
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suming and difficult.

For this reason, some simplified identification methods
are suggested [4,10]. S.R. Naidu suggested a simple ana-
lytic formula using only the descending branch of the limit-
ing hysteresis loop [10]. Although the formula is simple
and easy to implement, it is less accurate than required be-
cause it adopts only the limiting hysteresis loop.

In this paper, a new identification algorithm for the Preisach
model is developed, considering the identification procedure
as an inverse problem. In the algorithm, the distribution func-
tion is approximated using the Bezier spline and Gaussian
function for the coercive and interaction fields axes, respec-
tively. The control points of the Bezier spline and the vari-
ances of the Gaussian function are taken as the parameters for
the distribution function and optimized using the inverse algo-
rithm to get the proper distribution function. As an optimizer,
the (1+1) evolution strategy is adopted.

2. Preisach Model

In the Preisach model, the magnetic material is assumed
to be composed of interacting magnetic domains that have
their own interacting and coercive fields. When the mag-
netic field is externally applied to the domain in which the
up and down switching fields are (o), the magnetic be-
havior is modeled, as shown in Fig. 1(a), using the elemen-
tary hysteresis operator Yo, [8]. The distribution func-
tion relates the Preisach model to a particular material and
is physically the number of magnetic domains having the
same switching fields. It is defined from the measured re-
versal curves as follows [8]:
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Fig. 1 The Preisach plane: (a) the elementary hysteresis op-
erator, (b) $7(r) and S*(¢+) when the applied field var-
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where Mygis the magnetization when the applied field is
decreased to H,=f3 after being increased to H,=o from the
negative saturation field (-Hy).

When the applied magnetic field is H(t), the total magneti-
zation of the material is computed using the elementary hys-
teresis operator and distribution function as follows [7,8]:

M= [[ wH,.H,)9(H, H)H)dH,dH,

H, 2H,

- ” H(H,.H,)dH,dH, -ﬂu(H,,, H,)dH,dH, (2)
s* <

where S* and S represent the regions where the elementary
hysteresis operator operates at the up and down positions,
respectively, as shown in Fig. 1(b), and are defined as

S'(ty={(H,H)eT : J(H,, H)H{)=+1},
SO={H,H)eT : JH H)HDO=-1}, 3
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Fig. 2 The Everett function in Preisach plane

where T is the Preisach plane.

From (2), the magnetization of a material can be thought
of as a function of only the distribution function if the ele-
mentary hysteresis operator and the applied field are given.

3. The Identification Algorithms
3.1 Conventional Identification Algorithm

Theoretically the distribution function can be computed
from the measured reversal curves using (1). However, the
numerical implementation is difficult and is computed, in
reality, using the Everett function [2]. The Everett function
is computed from the reversal curves as follows [2,7,8]:

E@,B)=(M,- M,)/2 (4)

where M, is the magnetization when the applied field is
increased to H,=o from negative saturation field -H, and
Mg is defined as in (1). After the Everett function is found,
the distribution function can be computed using the follow-
ing equation.

E@.B)=], u(H,.H,)dH dH, )

H,<a.H,2B)

The physical meaning of the Everett function E(a,f3) is
the area of the triangle in the Preisach plane weighted by
the distribution function as shown in Fig. 2. If the distribu-
tion function is assumed to be constant at the small region
(o € H, € o, B1 < Hy£Br), it can be approximated, as
shown in Fig. 2, as follows:

E@,, )~ @, )~ E@, B)+E@.B) 4
(@, —,)B, - B)

uio, By =

where o = (0 + 03)/2, and B = (B + [$2)/2.
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Fig. 3 The coercive and interaction fields axes in Preisach
plane
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3.2 Identification Method using Inverse Algorithm

The Preisach plane can also be defined with the coercive field
H.and interaction field H;axes as shown in Fig. 3, and their val-
ues at the point (4, H,,) are calculated as follows [1,8]:

H(H,H,)=(H,6+H,)/2
H.(H, H,)=(H,-H,)/2 (N

For a particular A, the variation of the distribution func-
tion along the interaction field axis, is known to be Gaus-
sian [7.8], and it can be determined uniquely if the values
at any two points are given. In this paper, the normalized
interaction field #; is defined as

h=HIN2H - H) (3)

and the two points, #;= 0 and ; = 0.25, are taken as shown
in Fig. 4(a), and the corresponding values, Dy(H,) and
Dy»s(H,), are taken as the parameters for the distribution
function. Hence, with the two parameters, the distribution
function at a particular H, can be written as [8]

2

20°(H,)
262(H6)=__ H::n(Hr) (9)
16log{Dy,5(H )/ Dy(H )}

w(H, H )= D,(H)Exp{ }

where H,,, is the maximum interaction field for H, defined as
H,(H)=2H,-H,). (10)

On the other hand, the variation of the distribution func-
tion along the coercive field is not Gaussian and can be ap-
proximated using the Bezier spline with several control
points as shown in Fig. 4(b). In the figure, the coercive
field H. is normalized by its maximum value \/EHX and
the points 4; = 0.0, 0.2, 0.3, 0.4, 0.5, 0.7, and 1.0 are taken
as the control points. Each control point corresponds to the
Do(H,) in (9). Therefore, the distribution function can be
accurately defined if the two parameters, Dy(H.) and
Do.>s(H,), are determined for sampling Dy(H,.) points.

As mentioned before, in the Preisach model, the mag-
netization is a function of only the distribution function if
the elementary hysteresis operator and the applied field are
given. The identification procedure, hence, can be consid-
ered an inverse problem where the independent variables
are the parameters of the distribution function and the ob-
ject is to get proper outputs (magnetizations) for the given
inputs (applied fields).

10 7,

0 h
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Fig. 4 The parameters of the distribution function of the
Preisach model: (a) along the interaction field axis,
where h; is the normalized value of H; by
(2H,-H.), (b) along the coercive field axis,

where A, is normalized value of H. by 2H,

Therefore, the objective function to be minimized can be
defined using the calculated and measured magnetizations
for the applied magnetic fields as follows:

/]

N
F ()= (M, (H,)-M(H,)) (b
i=l

where N is the number of measured data and M,,(H,) and
M_ (H,;) are the measured and calculated magnetizations for
the applied magnetic field intensity Hy;. It should be noted
that, in the construction of the objective function, the
measured data may not be the reversal curves. The major
loop of the hysteresis curve or the initial magnetization
curve can possibly be used. The overall algorithm of the
identification method using the inverse algorithm can be
summarized as follows.

Step 1 Read the applied magnetic field and measured
magnetization data.

Step 2 Set the initial parameters for the distribution
function.

Step 3 Construct the distribution function using parame-
ters.

Step 4 Compute the objective function using the calcu-
lated magnetizations.

Step 5 If the objective function is small enough, stop.
Otherwise, modify the parameters and go to Step 3.

As an optimizer, the nondeterministic method, such as
the evolution strategy, genetic algorithm, is preferred be-
cause the relationship between the distribution function and
the objective function is implicit and the gradient vector is
difficult to calculate.
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4. Numerical Examples

The (1+1) evolution strategy is adopted as an optimizer
and incorporated with the developed identification algo-
rithm.

4.1 Identification Using Major Loop of Hysteresis Curve

The developed identification algorithm using the inverse
algorithm is applied to calculate the magnetization of the
anisotropic ferrite permanent magnet (PM1), which is con-
structed so that almost all of the magnetic domains are
aligned in one direction [1]. The reversal curves measured
using VSM are shown in Fig. 5, where the curves contain
some oscillations near the full magnetization. Using the
conventional identification method, first the distribution
function is computed, shown in Fig. 6. Negative values of
the distribution function can be seen.
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Fig. 5 The reversal curves of the anisotropic ferrite per-
manent magnet PM1
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Fig. 6 The distribution function for the permanent magnet
PM1 computed using the conventional identification
method

Secondly, the suggested identification algorithm is ap-
plied. To construct the objective function, only the major
loop from the measured reversal curves are used. Fig. 7
shows the computed major loop compared with the meas-
ured one of the hysteresis curve. The two curves are consis-
tent with each other.

0.09 M (1]

850 -600 350 -100 150 400 650 900
0.03 H [KAmi
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Fig. 7 Comparison of the computed and measured major
loops of the hysteresis curve of the permanent mag-
net PM1

The distribution function and Everett function, computed
using the suggested identification method, are shown in Fig.
8 and Fig. 9, respectively. Comparing with Fig. 6, which is
obtained using the conventional identification method, the
suggested identification algorithm gives, a smoother and
more reasonable result and supplies no negative values of
the distribution function.

Notice that just the major loop of the hysteresis curve is
enough in the suggested identification method while the
whole reversal curves are required in the conventional
identification method.

4.2 Identification Using Initial Magnetization Curve

The suggested identification algorithm is also applied to
the material of which only the initial magnetization curve
(B-H curve) is available. If the distribution function can be
found from the initial magnetization curve, the identifi-
cation method will be very useful in real applications be-
cause, in many real engineering problems, the initial mag-
netization curve can be easily obtained while the reversal
curves are very difficult to obtain.

Fig. 10 shows the B-H curve of the anisotropic rubber
ferrite permanent magnet (PM2), which is used in the drum
motor of video cassette recorders. Using the B-H data from
the curve, the objective function is constructed.

The computed distribution function and the Everett func-
tion are shown in Fig. 11 and Fig. 12, respectively, and are
not as sharp as these in Fig. 8 and Fig. 9 because, in the au-
thors’ opinion, the magnetic domains are not fully aligned
in one direction. The calculated B-H curve is shown in Fig.
10 together with the measured curve, where the two curves
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are shown to be consistent with each other.

For the arbitrary applied fields, the magnetization curve
is also calculated with the distribution function computed
by using the suggested identification method. The wave-
form of the applied magnetic fields is shown in Fig. 13(a),
and the corresponding computed magnetizations are shown
in Fig. 13(b) together with the measured one. It can be seen
the computed magnetizations are almost same with the
measured magnetizations.
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Fig. 8 The calculated distribution function for the perma-
nent magnet PM1

Fig. 9 The computed Everett function for the permanent
magnet PM1
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Fig. 10 Comparison of the computed and measured initial
magnetization curves of the permanent magnet
PM2
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Fig. 11 The computed distribution function for the perma-
nent magnet PM2
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Fig. 12 The computed Everett function for the permanent
magnet PM2
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Fig. 13 The hysteresis curves of the permanent magnet
PM1 for arbitrary inputs: (a) the waveform of the
applied magnetic field, (b) the computed and
measured hysteresis curves
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5. Conclusions

A novel identification algorithm for the Preisach model
is suggested. The suggested algorithm treats the identifica-
tion procedure as an inverse problem. The distribution
function is parameterized using the Bezier spline and Gaus-
sian function for the coercive and interaction fields axes,
respectively, and the parameters are used as the independ-
ent variables in the inverse problem. As an optimizer, the
(1+1) evolution strategy is adopted. Other nondeterministic
optimizers, however, can also be adopted. Through nu-
merical examples with permanent magnets, the validity of
the suggested algorithm is proven. In the suggested algo-
rithm, the major loop of the hysteresis curve or the initial
magnetization curve is enough to find the distribution func-
tion of the Preisach model. This makes the suggested algo-
rithm more applicable to real engineering problems. Hence,
the Preisach model is thought to be easily applied to the
calculation of the magnetization or the iron loss of the
magnetic materials with the suggested identification
method.
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