Prediction of Sediment-Bound Metal Bioavailability in Benthic Organisms: Acid Volatile Sulfide (AVS) Approaches

  • Published : 2002.06.01

Abstract

Benthic organisms dwell in sediment-water interface that contains significant amount of organic and inorganic contaminants. Their feeding behavior is highly related with sediment itself and pore water in the sediments, especially in ease of deposit feeder (i.e. polychaete, amphipod). The acid volatile sulfide (AVS) is one of the important binding phases of sediment-bound metals in addition to organic matter and Fe and Mn oxide fractions in sediments, particularly in anoxic sediments. The AVS model is a powerful tool to predict metal bioavailability and bioaccumulation in benthic organisms considering SEM/AVS mole ratios in surficial sediments. However, several biogeochemical factors must be considered to use AVS model in the sediment-bound metal bioavailability.

Keywords

References

  1. Am. J. Sci. v.278 Experimental studies of changes produced by depisit feeders on water, sediment, and overlying water chemistry Aller RC https://doi.org/10.2475/ajs.278.9.1185
  2. Environ. Toxicol. Chem. v.10 Acid volatile sulfide as a factor mediating cadmium and nickel bioavailability in contaminated sediments Ankley GT;GL Phipps;EN Leonard;DA Benoit;VR Mattson;PA Kosian;AM Cotter;JR Dierkes;DJ Hansen;JD Mahony https://doi.org/10.1897/1552-8618(1991)10[1299:ASAAFM]2.0.CO;2
  3. Environ. Toxicol. Chem. v.12 Predicting the acute tocicity of copper in freshwater sediments: Evaluation of the rolw od acid volatile sulfide Ankley GT;VR Mattson;EN Leonard;CW West;JL Bennett https://doi.org/10.1897/1552-8618(1993)12[315:PTATOC]2.0.CO;2
  4. Environ. Toxicol. Chem. v.15 Evaluation of metal/acid-colatile sulfide relationships in the prediction of metal bioaccumulation by benthic macroinvertebrates Ankley GT https://doi.org/10.1897/1551-5028(1996)015<2138:EOMAVS>2.3.CO;2
  5. Lawrence River. Can. J. Fish. Aquat. Sci. v.51 Abiotic and seasonal factors influencing trace metel levels(Cu, Cu, Ni, Pb, and Zn) in the frehwater amphipod Gammarus fasciatus in two flucial lakes of the St. Amyot M;B Pinel-Alloul https://doi.org/10.1139/f94-203
  6. Early Diagenesis Berner RA
  7. Environ. Toxicol. Chem. v.15 Predicting the toxicity of metal-spiked laboratory sediments using acid-volatile sulfide and interstitial water normalizations Berry WJ;DJ Hansen;JD Mahony;D Robson;DM Di Toro;BP Shipley;B. Rogers;JM Corbin;WS Boothman https://doi.org/10.1897/1551-5028(1996)015<2067:PTTOMS>2.3.CO;2
  8. J. Aquat. Eco. Health. v.4 Influence on copper bioaccumulation, growth, and durvival of the midge, Chironumus tentans, in metal contaminated sediments Besser JA;JA Kubitz;CG Ingersoll;E Braselton;JP Giesy https://doi.org/10.1007/BF00116651
  9. Can. J. Fish. Aquat. Sci. v.52 EDTA toxicity and background concentrations of copper and zinc in Hyalella azteca Borgmann U;WP Norwood https://doi.org/10.1139/f95-087
  10. Can. J. Fish. Awuat. Sci. v.54 Toxicity and accumulation of zinc and copper in Hyalella azteca exposed to metal-spiked sediments Borgmann U;WP Norwood https://doi.org/10.1139/cjfas-54-5-1046
  11. Limnol. Oceanogr. v.34 Complexation of zinc by natural organic ligands in the central North Pacific Bruland KW https://doi.org/10.4319/lo.1989.34.2.0269
  12. Metal Speciation in the Encironment Ezchange of heavy metals bewteen sediment compinents and water Calamono W;W Ahlf;V Forstner;J. A. C. Broekart(eds.);S. Gucer(eds.);F. Adams(eds.)
  13. NRCC No. 27694 Panel on biologically available metals in sediments Campbell PGC;AG Lewis;PM Chapman;AA Crowder;WK Fletcher;B Imber;SN Luoma;PM Stokes;M Winfrey
  14. Environ. Toxicol. Chem. v.10 The role of acid-volatile sulfide in determining cadmium bioavailability and toxicity in freshwater sediments Carlson AR;GL Phipps;VR Mattson;PA Kosian;AM Cotter https://doi.org/10.1897/1552-8618(1991)10[1309:TROASI]2.0.CO;2
  15. Environ. Toxicol. Chem. v.13 Relarionship between acid volatile sulfide and the toxicity of zinc lead, and copper in marine sediments Casas AM;EA Crecelius https://doi.org/10.1897/1552-8618(1994)13[529:RBAVSA]2.0.CO;2
  16. Environ. Sci. Technol. v.33 Assessment of sedimentary Cu availability: A comparison of biomimetic and AVS approaches Chen Z;LM Mayer https://doi.org/10.1021/es980615k
  17. Environ. Sci. Technol. v.32 Refining and testing a trace metal biomonitor (Chaoborus) in highly acidic lakes Croteau ME;L Hare;A Tessier https://doi.org/10.1021/es970705+
  18. Mar. Chem. v.16 Sulfide control of cadmium and copper concentrations in anaerobic estuarine sediments Davies-Colly RJ;PO Nelson;KJ Williamson https://doi.org/10.1016/0304-4203(85)90021-0
  19. Chemical Processes in Lakes Conceptual models for transport at a redox boundaty Davison W;W. Stumm(Ed.)
  20. Mar. Ecol. Prog. Ser. v.108 Humic and fulvic acids: Sink or source in the avalability of metals to the marine bivalves Potamocorbula amurensis and Macoma balthica Decho AW;SL Luoma https://doi.org/10.3354/meps108133
  21. Environ. Toxicol. Chem. v.15 Bioavailability and chronic toxicity of cadmium in desiment to the estuarine amphipod, Leprocheirus plumulosus DeWitt TH;RC Swartz;DJ Hansen;D McGovern;WJ Berry https://doi.org/10.1897/1551-5028(1996)015<2095:BACTOC>2.3.CO;2
  22. Environ. Toxicol. Chem. v.9 Toxicity of cadmium in sediments: The role of acid volatile sulfide Di Toro DM;JD Mahony;DJ Hansen;KJ Scott;MB Hicks;SM Mayr;MS Redmond https://doi.org/10.1897/1552-8618(1990)9[1487:TOCIST]2.0.CO;2
  23. Environ. Toxicol. Chem. v.26 Acid volatile sulfide predicts the acute toxicity of cadmium and mickel in sediments Di Toro DM;JD Mahony;DJ Hansen;KJ Scott;AR Varlson;GT Ankley
  24. Environ. Sci.Technol. v.30 Accumulation and retention of metals in mussels from food and water: A cimparsion under field and laboratory conditions Fisher NS;JL Teyssie;SW Fowler;WX Wang https://doi.org/10.1021/es960009u
  25. Metal pollution in the aquatic encironment. (2nd ed.) Forstner U;TW Wittman
  26. Geochim. Cosmochim. Acta. v.43 Early Oxidation of Organic Matter in Pelagic Sediments of Eastern Equatorial Atlantic:Suboxic Diagenesis Forelich PN;GP Klinkhammer;ML Bender;NA Leudkte;GR Heath;D Vullen;P Dauphin;D Hammond;B Hartman;V Maynard https://doi.org/10.1016/0016-7037(79)90095-4
  27. Can. J. Fish. Aquat. Sci. v.54 The bioavailability of sediment-bound Cu, Co, and Ag to the messel Mytilus edulis Gagnon C;NS Fisher https://doi.org/10.1139/cjfas-54-1-147
  28. Environ. Sci. Technol. v.34 Geochemical Influences on assimilation of sediment-bound metals in clams and mussels Griscom SB;NS Fisher;SN Luoma https://doi.org/10.1021/es981309+
  29. Environ. Toxicol. Chem. v.12 Chronic effect of cadmium in sediments on colonization by benthic marine organisms: An evaluation of the role of interstitial cadium and aCu-volatile sulfide in biological availability Hansen DJ;JD Mahony;WJ Berry;SJ Benyi;JM Corbin;SD Pratt;DM Di Toro;MB Able
  30. Limnol. Oceanogr. v.39 A field experimental study of metal toxicity and accumulation by benthic invertebrates: Implications for acid-volatile sulfide(AVS) model Hare L;R Carignan;MA Huerta-Diaz https://doi.org/10.4319/lo.1994.39.7.1653
  31. Mar. Ecol. Prog. Ser. v.22 Eggects of adherent bacteria and bacterial ectracelluar polymers upon assimilation by Macoma balthica of sediment-bound Cu, An and Ag. Harvey RW;SL Luoma https://doi.org/10.3354/meps022281
  32. App. Environ. Microbiol. v.49 Sulfate reduction in fresh-water sediments receiving acid mine drainage Herlihy AT;A: Mills
  33. Environ. Toxicol. Chem. v.13 Bioaccumulation of metals by Hyalella azteca exposed to contaminated sediments from the upper Clark Fork River, Montana IngersoII CG;WG Brumbaugh;FJ Dwyer;NE Kemble https://doi.org/10.1897/1552-8618(1994)13[2013:BAOMBH]2.0.CO;2
  34. Canadian Technical Report of Fisheries and Aquatic Science. v.2039 Assays of Hamilton Harbour sediments using Diporeia hoyi(Amphipoda) and Chironomus plumosus(Diptera) Jackson M;J Milne;H Johnston;R Dermott
  35. Environ. Toxicol. Chem. v.11 Toxicokinetics in aquatic system: Model comparisons and use in hazard assessment Landrum PF;H Lee II;MJ Lydy https://doi.org/10.1897/1552-8618(1992)11[1709:TIASMC]2.0.CO;2
  36. Hydrobiol v.87 The effects of the burrowing mayfly on nitrogen and sulfide fractions in lake sediment microcosms Lawrence GB;MJ Mitchell;DH Landers
  37. Science v.287 Reassessing metal bioavailability form contaminated sediments: Limited influence of acid volatile sulfide Lee BG;SB Griscom;JS Lee;HS Jeon;CH Koh;SN Luoma;NS Fisher https://doi.org/10.1126/science.287.5451.282
  38. Hydrobiol. v.271 Seasonal variation of acid volatile sulfide concentrations in sediment cores from three norhern Minnesota lakes Leonard EN;VR Mattson;DA Benoit;RA Hoke;GT Ankley https://doi.org/10.1007/BF00007545
  39. (15th) Annual Meeting, Society of Environmental Toxicology and Chemistry Seasonal relationships between acid-volatile sulfide concentrations and toxicity of zinc to benthic invertebrates. Abstracts Liber K;D Call;T Markee;K Schmude;GT Ankley
  40. Hydrobiol v.176;177 Can we determine the biolgical availability of sediment-bound trace elements Luoma SN
  41. Metal speciation and bioavaility in aquatic systems Predicition of metal toxicity in nature from bioassaus: Limitation and reserach needs. Luoma SN;Tessier A(ed.);DR Turner(ed.)
  42. Ecological Risk Assessment of contaminat-edsdiment Uncertainties in assessing contaminant exposure from sediments: bioavailbility Luoma SN;NS Fisher;C Ingersoll(eds.);G Biddinger(eds.);T Dill(eds.)
  43. Elsevier Applied Science Bioddinger and Monitoring of Heavy Metal Pollution: Land and Air Martin M;PJ Coughtrey
  44. Hydrodiol v.122 Effects of benthic macroinvertebrates on the exchange of solutes between sediments and freshwater Matisoff G;J Berton-Fisher;S Matis
  45. Environ. Sci.Technol. v.30 Biailability of sedimentary contaminants subject to deposit-feeder digestion Mayer LM;Z Chen;RH Findlay;J Fang;S Sampson;RFL Seif;PA Jumars;C Quetel;OFX donard https://doi.org/10.1021/es960110z
  46. Environ. Sci. Technol. v.27 Enhansing ecotoxicological modeling and assessment: Body residues and modes of toxic action McCarty LS;D Mackay
  47. J. Great Lakes Res. v.9 Distribution of major elements and metals in sediment cores from the western basin of Lake Ontario Mudroch A https://doi.org/10.1016/S0380-1330(83)71883-6
  48. J. Great Lakes Res. v.21 Historical records of metal pollution in sediments of Toronto and Hamilton Harbours Nriagu JO;HKT Wong;WJ Snodgrass
  49. Environment v.3 Global metal pollution Nriagu JO
  50. Environ. Toxicol. Chem. v.14 The role of acid volatile sulfide in determining bioavailability of cadmium and nickel from contaminated sediments: Experiments with Neanthes arenaceodentata (Polychaeta: Nereidae) Pesch CE;DJ Hansen;W Boothman;W Berry;JD Mahony https://doi.org/10.1897/1552-8618(1995)14[129:TROASA]2.0.CO;2
  51. Environ. Toxicol. Chem. v.15 Effect of bioturbation of metal-sulfide oxidation in sulficial freshwater sediments Peterson GS;GT Ankley;EN Leonard https://doi.org/10.1897/1551-5028(1996)015<2147:EOBOMS>2.3.CO;2
  52. Biomonitoring of Trace Aquatic Contaminants(1st ed.) Phillips DJH;PS Rainbow;Cairns JM(Eds.)
  53. Freshwater Biol. v.33 Freshwater amphipods as bioindicators of metal pollution in surface and interstitial aquatic systems Plenet S https://doi.org/10.1111/j.1365-2427.1995.tb00393.x
  54. Hydrobiol. v.174 Comparative strategies of heavy metal accumulation by crustaceans: zinc, copper and cadmium in a decapod, an amphipod and a barnacle Rainbow PS;SL White https://doi.org/10.1007/BF00008164
  55. Environ. Toxicol. Chem. v.15 Predicting chronic toxicity of sediments spiked with zinc: An evaluation of the acid-colatile sulfide model using a life-cycle test with the migde Chironomus tentans Sibley PK;GT Ankley;AM Cotter;ED Lonard https://doi.org/10.1897/1551-5028(1996)015<2102:PCTOSS>2.3.CO;2
  56. Mar. Freshwater Res. v.46 Heavy metals in intact and resuspended sediments of a California reservoir, with emphasis on potential bioavailability of copper and zinc Slotton DG;JE Reuter
  57. J. Great Lakes Res. v.12 Accumulation of contaminant metals in the amphipod Diporeia spp. in western Lake Ontario Song KH;VT Breslin
  58. Ph.D. Thesis. State University of New York Bioaccumulation of sediment-bound Zn by the freshwater amphipod Diporeia spp. Song KH
  59. Aquatic Chemistry(2nd ed.) Stumm W;JJ Morgan
  60. Oceanography, An Illustrated Guide Summerhayes CP;SA Thorpe
  61. Can J. Fish. Aquat. Sci. v.41 Relationships between the partitioning of trace metals in sediments and accumulation in the tissues of the freshwater mollusc Elliptio complanata in a mining area Tessier A;PGC Campbell;JC Auclair;M Bisson https://doi.org/10.1139/f84-180
  62. Limnol. Oceanogr. v.38 Modeling cadmium partitioning in oxic lake sediments and Cu concentrations in the freshwater bivalve Anadonta grandis Tessier A;Y Couillard;PGC Campbell;JC Auclai https://doi.org/10.4319/lo.1993.38.1.0001
  63. Mar. Ecol. Prog. Ser. v.178 Bioavailability of dissolved and sediment-bound metals to a marine deposit-feeding polychaete Wang WX;I Stupakoff;NS Fisher https://doi.org/10.3354/meps178281
  64. Restoration and recovery of an industrial region(1st ed.) Winterhalder K;Gunn JM(ed.)