Extraction of Brain Boundary and Direct Volume Rendering of MRI Human Head Data

MR머리 영상의 뇌 경계선 추출 및 디렉트 볼륨 렌더링

  • 송주환 (전주대학교 교양학부) ;
  • 권오봉 (전북대학교 전자정보공학부) ;
  • 이건 (한동대학교 전산전자공학부)
  • Published : 2002.12.01

Abstract

This paper proposes a method which visualizes MRI head data in 3 dimensions with direct volume rendering. Though surface rendering is usually used for MRI data visualization, it has some limits of displaying little speckles because it loses the information of the speckles in the surfaces while acquiring the information. Direct volume rendering has ability of displaying little speckles, but it doesn't treat MRI data because of the data features of MRI. In this paper, we try to visualize MRI head data in 3 dimensions as follows. First, we separate the brain region from the head region of MRI head data, next increase the pixel level of the brain region, then combine the brain region with the increased pixel level and the head region without brain region, last visualizes the combined MRI head data with direct volume rendering. We segment the brain region from head region based on histogram threshold, morphology operations and snakes algorithm. The proposed segmentation method shows 91~95% similarity with a hand segmentation. The method rather clearly visualizes the organs of the head in 3 dimensions.

본 논문은 MR 머리 영상 데이타를 디렉트 볼륨 렌더링하는 방법을 제안한다. MR 영상을 가시화하기 위해서는 서피스 렌더링을 많이 사용하나 이 방법은 면을 추출하는 과정에서 면 내부의 정보를 잃어버린다. 디렉트 볼륨 렌더링은 면 내부의 정보를 추출 할 수 있으나 데이타의 특성상 MR 머리 영상 데이타에 이 방법을 적용하기가 쉽지 않다. 이 논문에서는 MR 머리 영상 데이타를 뇌와 뇌 이외의 구성 요소로 분할한 다음에 뇌 복셀값을 증가시키고 원래의 영상과 다시 결합시켜 디렉트 볼륨 렌더링을 시도하였다. 뇌 경계선은 히스토그램 경계값, 모포로지 연산, 스네이크 알고리즘(snakes algorithm)을 이용하여 추출하였다. 추출된 뇌 경계선는 육안으로 추출한 것의 91~95%의 유사도를 보인다. 제안된 디렉트 볼륨 렌더링은 뇌와 뇌 이외의 구성 요소를 동시에 3차원 가시화하였다.

Keywords

References

  1. C. Tsai, B. S. Manjunath, and R. Jagadeesan, Automated Segmentation of Brain MR Images, Pattern Recognition, vol. 28, no. 12, pp. 1825-1837, 1995 https://doi.org/10.1016/0031-3203(95)00047-X
  2. B. Lichtenbelt, R. Crane, and S. Naqvi, Introduction to Volume Rendering, Prentice Hall PTR, 1998
  3. M. E. Brummer, R. M. Mersereau, R. L. Eisner, and R. R. J. Lewine, Automatic Detection of Brain Contours in MRI data sets, IEEE Transaction on Medical Imaging, vol. 12, pp. 153-166, Jun 1993 https://doi.org/10.1109/42.232244
  4. M. R. Jung, H. W. Park, and D. W. Paik, An Analytical Ray Casting of Volume Data, Pacific Graphics 98, pp. 79-86, 1998 https://doi.org/10.1109/PCCGA.1998.732031
  5. C. Gasparakis, Multi-resolution Multi-field Ray tracing: A Mathematical Overview. Proceedings of IEEE Visualization 99. ACM Press, 1999 https://doi.org/10.1109/VISUAL.1999.809888
  6. S. Parker, M. Parker, Y. Livnat, P. P. Sloan, C. Hansen, and P. Shirley. Interactive Ray Tracing for Volume Visualization. IEEE Transactions on Visualization and Computer Graphcis, vol. 5, no. 3, pp. 238-250, 1999 https://doi.org/10.1109/2945.795215
  7. M. Wan, S. Bryson, and A. Kaufman, Boundary Cell Based Acceleration for Ray Casting, Proceedings of IEEE Visualization 99, pp. 379-386. 1999
  8. M. Sramek, and A. Kaufman, Fast Ray-Tracing of Rectilinear Volume Data Using Distance Transforms, IEEE Transaction on Visualization and Computer Graphics, vol. 6, no. 3, pp. 236-252, 2000 https://doi.org/10.1109/2945.879785
  9. CEA Research Center, Brain Segmentation Using Mathematical Morphology http://www-dsv.cea.fr/thema/shfj/web/demo_extraction/english/cerveau.htm
  10. T. Oakes, J. Koger, and R. Davidson, Automated Whole-Brain Segmentation, http://tezpur.keck.waisman.wisc.edu/~oakes/brain_segment_HBM_poster_all.pdf
  11. H. Suzuki, and J. Toriwaki, Automatic Segmentation of Head MRI Images by Knowledge Guided Thresholding, Computerized Med. Imag. Graphics, vol. 15, no. 4, pp. 233-240, 1991 https://doi.org/10.1016/0895-6111(91)90081-6
  12. H. E. Cline, W. E. Lorensen, R. Kikinis, and F. Jolesz, Three-dimensional Segmentation of MR images of the Head using Probability and Connectivity, J. Comput. Assist. Tomogr., vol. 14, no. 6, pp. 1037-1045, 1990 https://doi.org/10.1097/00004728-199011000-00041
  13. T. Kapur, W. E. L. Grimson, W. M. Wells III, and R. Kikinis, Segmentation of Brain Tissue from Magnetic Resonance Images, Med. Imag. Anal., vol. 1, no. 2. 1996 https://doi.org/10.1016/S1361-8415(96)80008-9
  14. Y. Wang, E. K. Teoh, and D. Shen, Structure-Adaptive B-Snake for Segmenting Complex Objects, ICIP 2001, Thessaloniki Greece, Oct 7-10 2001 https://doi.org/10.1109/ICIP.2001.958607
  15. F. Pannizzo, M. J. B. Stallmeyer, J. P. Whalen, and P. T. Cahill, Quantitative MRI Studies for Assessment of Multiple Sclerosis, Magn. Reson. Med., vol. 24, pp. 90-99, 1992 https://doi.org/10.1002/mrm.1910240110
  16. http://www.nlm.nih.gov/research/visible/visible_human.html
  17. http://www.siggraph.org/education/materials/volviz/volume_visualization_data_sets.htm
  18. M. Levoy, Display of Surfaces from Volume Data, IEEE Computer Graphics and Application, vol. 8, pp. 29-27, May 1988 https://doi.org/10.1109/38.511
  19. R. A. Drebin, L. Carpenter, and P. Hanrahan, Volume Rendering, Computer Graphics, vol. 22, pp. 51-58, Aug 1988
  20. W. Schroeder, K. Marten, and B. Lorensen, The Visualization Toolkit, 2nd Edition, Prentice Hall PTR, 1998
  21. M. Kass, A. Witkin, and D. Terzopoulos, Snakes: Active Countor Models, International Journal of Computer Vision, vol. 1, no. 4, pp. 321-331, 1987 https://doi.org/10.1007/BF00133570
  22. J. W. Song, O. B. Gwun, and H. B. Jeong, Operation Level Acceleration for Volume Rendering, Proceedings of SPIE:Visualization and Data Analysis 2002, vol. 4665. pp.154-164, Jan 2002 https://doi.org/10.1117/12.458782
  23. A. P. Zijdenbos, B. M. Dawant, R. A. Margolin, and A. C. Palmer, Morphometric Analysis of White Matter Lesions in MR images: Method and Validation, IEEE Trans. Med. Imag., vol. 13, pp. 716-724, Dec. 1994 https://doi.org/10.1109/42.363096