s} H Q) dElm|o]o] Alagd FHel o], AA7t 7hA 81/ A 7t sHvisualization) & S8% 715 &
E&H9 A8 Tx9 ¢ndEe

gt B =ES AN AY dode 98
Attt Ae, AY dolge wf Wuig 2718 742 QoA Al‘.: dole & iz AAz A
Hddste AL 278 F97F urh waiA AAG AY Ao g A3 LOD(Levels of Detail) #2]¢ & 28 Aol 4 Algo] dd.
2 =g AZHoEAR A AY Az 4z, A%5E B “11'55‘ A, 249 LOD 75 R old 7Iwg A 7 & A e
g} AE A3, Ak 7192 ANk PC AFGOIA 29 22 Zeqle dold £28 BHuh

Efficient Data Structures and Algorithms for Terrain Data Visualization

Moon-Ju Jung'- JungHyun Han'

ABSTRACT

In implementing interactive multimedia systems, real-time visualization plays an important role. This paper presents efficient data structures
and algorithms for real-time terrain navigation. Terrain data set is usually too huge to display as is. Therefore LOD (levels of detail) methods
and view frustum culling are essential tools. This paper describes in detail compact hierarchical data structures, fast view frustum culling, and
efficient LOD construction/rendering algorithms. Unlike previous works, we use a precise screen-space error metric for vertex removal and a
strict error threshold allowing sub-pixel-sized errors only. Nevertheless, we can achieve 22 fps on average in a PC platform. The methods presented
in this paper also satisfy almost all of the requirements for interactive real-time terrain visualization.

719 E : X B2 (terrain rendering), LOD(Levels of Detail), § Z3AE e (view frustum culling)
1. Introduction contrast, the TIN is basically a triangulated or polygonalized
mesh typically generated by extracting feature points from

Terrain rendering occupies an important part in several the height field data.

applications such as computer graphics, geographic infor
mation systems, games, virtual reality, flight simulation, etc.
Such fields require terrain navigation or fly-through in an
interactive real-time mode. However, the original terrain
data are often too large to display at interactive frame rates
despite the improvement of graphics hardware capabilities.
Therefore, methods are needed which reduce the complexity
of the terrain data but retain the image quality. The LOD
(levels of detail) method has been adopted as a suitable tool
that presents the near/important parts by a large number
of small polygons, and the far/unimportant parts by a small
number of large polygons.

Among several terrain data representations, DEM (digital
elevation model) and TIN (triangulated irregular network)
have been most popular. DEM, also called height filed, is
a set of height/elevation data sampled in a regular grid. In

8 9 ganet ety grREAZER
tt A/\]ﬁ] 9 A adety AREALER w4
A4 2002d 8¢9 13y, AlAberia 2002 9 27

DEM-based LOD algorithms [2, 3,5, 9, 14, 15, 18, 19, 25]
usually construct a hierarchical structure such as quadtree
[1,20, 21], and dynamically remove and insert vertices. In
contrast, TIN-based LOD algorithms [4, 6, 7, 13, 23, 24] usu-
ally adopt the traditional mesh simplification and LOD man-
agement techniques [8, 10-12, 22]. In general, TIN-based
algorithms produce more optimal triangulation, but are not
storage-efficient. In contrast, DEM-based algorithms have
proven to be more effective in view frustum culling, and can
easily manage LOD data structures. DEM-based algorithms
have demonstrated higher performance, and have been
preferred for terrain rendering [16].

The key issues in interactive real-time rendering of ter-
rain data can be listed as follows.

o View-dependent LOD : DEM vertices far from the
viewpoint may often be removed tremendously while
near vertices often require a higher resolution.

e Efficient view frustum culling : This usually leads to

582 HEMEET=F XA HO-AT HM43(2002.12)

high performance improvement because, in a typical
situation, only a small part of the large terrain is visible.

® Accurate and efficient error metric : An error metric
determines whether a vertex can be removed without
significant degradation of image quality.

® Memory requirement minimization : The terrain
data are huge and therefore LOD algorithms with mini-
mum memory requirement are preferred.

® Localized update : A change in the LOD represen-
tation should affect as small portions of the data as po-
ssible.

e Popping minimization : When the levels of detail are
changed, there are often popping effects perceived, whi-
ch should be minimized.

Among the issues listed above, the most important are
LOD implementation and view frustum culling. This paper
presents efficient data structures and algorithms to tackle
the two issues. In addition, our approach provides satisfac-
tory solutions to all the other issues listed above,

2. Related Work

This section reviews some recent DEM-based approaches
related with our methods to be presented.

Lindstrom et al. [14] proposed a bottom-up traversal of
the quadtree structure, where adjacent triangles are merged
into a larger triangle by removing the shared vertex. For
determining vertex removal, a Screen-space error metric
has been devised. They also used so-called block-based
simplification for interactive frame rates. However, the
devised error metric is not precise, and the LOD represen-
tation often contains many unnecessary triangles due to
forced split of triangles for crack elimination.

Duchaineau et al. [5] proposed both top—down and bot-
tom-up traverses with a binary triangle tree. Dual queues
for split and merge of triangles are maintained, and frame-
to-frame coherence can be exploited. However, like [14],
they also suffer from forced split of triangles.

Roéttger et al. [19] proposed a top-down traverse of the
quadtree structure. The quadtree is implicitly represented
by a matrix, where each element indicates whether the cor-
responding node of the quadtree exists or not. However, the
resolution difference between adjacent triangles is restricted
to one. This restriction often leads to unnecessarily many
triangles, for example, when rendering a large flat terrain
with a few local peaks.

Youbing et al. [25] proposed a simplified/fast view frus-
tum culling where a subset of the frustum faces is projected

onto the z =0 plane and the visible area is roughly selected
using the projection. However, their view frustum culling
is too naive, and often leads to overly large part of the terrain
data. Unlike forced—split methods, cracks are eliminated by
suppressing the crack-causing vertices.

3. Hierarchical Structures of Height Field Data

3.1 Block and guadiree representation

This subsection briefly explains the height field repre-
sentation proposed by Lindstrom et al. [14]. As depicted in
(Figure 1) (a), the smallest representable mesh consists
of 3X3 vertices, and is called a block. Out of the 9 vertices
of a block, the simplification procedure considers 5 vertices
(named top, bottom, left, right and center) as candidates
for removal. If all of them are removed, we have either of
the two possible triangulations shown in (Figure 1) (b),

center top

left -

nght

z

y
)_' bottom
x

(a) a block

(b) completely simplified blocks
(Figure 1) a quadtree block and its simplification

Suppose that we are given an original mesh shown in
(Figure 2) (a). It consists of 16 blocks. If all the 5 candidate
vertices of each block are removed, the original mesh will
be transformed into that of (Figure 2) (b). One more stage
of such complete simplification will lead to the coarsest mesh
in (Figure 2) (c).

This simplification strategy is compatible with the quad-
tree structure. Given (2*+1) x (2%+1) vertices, the quad-
tree will have Zlevels. Level O is the highest level and re-
presents the coarsest mesh with 9 vertices ; level (£—1)is
the lowest level and represents the original mesh. (See the
3-level quadtree in (Figure 2)). A node of the quadtree
corresponds to a block. Note that, except in the lowest level,
a block in level (m—1)has 4 child blocks in level m.

o -0 9 @

(a) level 2 (b} level 1 (c) level O

(Figure 2) Quadtree levels

3.2 Block data structure

There can exist 12 triangles in a block, as depicted in
(Figure 3) where T stands for Top, B for Bottom, L for Left,
and R for Right. Before simplification, a block has the 8
triangles {TL, TR, BL, BR, LT, LB, RT, RB}. Some vertic-
es (out of 5 candidates) may be removed for simplification.
Suppose that, for example, the top vertex is removed. Then,
two triangles TL and TR will be merged into a single larger
triangle T, and the new triangulation of the block will be
{T,BL,BR,LT, LB, RT, RB}.

Y

T T

LT RT

LB RB
BL | BR B

@

(Figure 3) 12 possible triangles in a block

To describe the status of a block, we use the data structure
Block shown below. Each triangle in (Figure 3) is associated
with a 1-bit flag, which indicates its presence/absence.
Other fields of the Block structure will be discussed later.

struct Block

{
unsigned TL:1, TR:1, BL:1,BR:1;
unsigned LT :1, LB:1, RT:1,RB:1;
unsigned T:1, B:1, .:1,R:1;
unsigned visible : 1 ;
WORD center_x, center_y ;

I

3.3 Block indexing

A block can be divided into 4 quadrants, and each quadrant
is labeled as depicted in (Figure 4) (a) [20, 21]. With this
labeling scheme, each block of the quadtree can be assigned
an index. Consider the hollow-vertex block in (Figure 4) (b).
It is positioned at the 3 quadrant of the root node block,
and so assigned code 11, With respect to the 3 quadrant,
the hollow-vertex block is in the Zn¢ quadrant, and so
assigned code 10w. The block index is the concatenation of

vl

X e

o

IS FEEXMC X FRQ Yueal

iy

583

these quadrant codes : 1110 = 14ao. (Figure 4) (c) shows
the indices of the 16 blocks of level 2.

PN NN\ -
‘a"“:":\‘:"“ 10 | 11 14] 15
2 3 NN NN slo izl
ZINVIN/ININ
NN NEYRE
Y q
0 1 [0 1 4 5
¢
X
(a) quadrant (b) a block (c) block indices
labels in level 2 in level 2

(Figure 4) Block indices

The index of a block at level m consists of Zm bits. The
parent—child relations between blocks can be easily found
by shift operations : If an index of 2m bits is shifted right
by 2 bits, the resulting 2(m-1) bits are the index of its parent
block. For example, the hollow-vertex block 1110w in
(Figure 4) has the parent block 11 at level 1. Thanks to
this indexing scheme, the quadtree does not need pointers,
and the LOD construction procedure (discussed in Section
5) can be implemented very efficiently.

1 1 1 (l)
|
v v
x P! " x93 2 4

(a) x coordinate

% 1 1 0
v v
x o+ " % .6

(b) y coordinate

(Figure 5) Computing vertex coordinates with a block index

Given a block index, it is straightforward to compute the
(x, y)-coordinates of the block vertices. Note that, for a
2m-bit index, m consecutive 2' bit codes specify m quadtree
blocks from levels 1 through m. Also note that a quadtree
block at level m has the width/height of 2 ™ where k is the
depth of the quadtree. Finally note that, in a 2-bit code, the
first bit determines the offset along y-axis and the second
bit determines x-offset, where the offset is either 0 or the
width/height of the associated block. These 3 facts allow
us to compute the x-coordinate of a block's lower-left vertex
by multiplying each second bit (of a block index) by the
width/height of the associated block and then adding them
up. Similarly, we can obtain the y- coordinate by processing
every first bit. (Figure 5) demonstrates how to compute the

584 ZEAMEISTI=F XA KI-AT M43(2002.12)

(x,y)-coordinates of the lower-left vertex of the example
block in (Figure 4) (b). Both the x- and y-coordinates of
the lower-left vertex are incremented by half of the width/
height of the associated block, and then assigned to cen-
ter_x and center_y of the Block structure.

3.4 Overall Data Structures

A separate array of Block structures is maintained for a
quadtree level, and therefore we have k arrays. The pcinters
to these k arrays are stored in another array P as shown
in (Figure 6). Given a level number | and a block index i,
its Block structure can be directly accessed using * (x(P+/
Y+

We also have two 2D arrays : one for storing height/z
values and the other for Vertex structures (which will be
discussed in Section 5.1). Indices of these two arrays are
equivalent to the (x, y)-coordinates of DEM vertices, and
therefore the data are directly accessible using the vertex
(x,y)-coordinates.

level 0 | —TP

level 1 | —1P

level2 | —1P b

level (k-2) | —

level (k-1) | —1 see
"
2"Yx(2"") blocks

(Figure 6) Arrays of Block structures

4, View Frustum Culling

Efficient view frustum culling plays a key role in real-time
rendering. However, traditional 3D view frustum culling
incurs a significant amount of computational cost. Youbing
et al. [25] proposed to project the view frustum onto the xy-
plane, generate a bounding triangle for the projected view
frustum, and then render the blocks which intersect the
triangle. We take a similar but more elaborate approach.

Eight vertices of the view frustum are projected onto the
z=0 or xy plane, and their convex hull is computed. It is
then checked whether the convex hull and the root node
block of the quadtree intersect. The block's xy-range is

computed using the level number and (center_x, center_y)
of the Block structure.

Recall that the root node of the quadtree corresponds to
the entire height field, and its 4 children (at level 1) are the
4 quadrants of the entire height filed. If the convex hull and
the root node intersect, the root node’s 4 child nodes/blocks
are visited and tested for intersection with the convex hull.
This top—down procedure of intersection test is done recur-
sively. If a block does not intersect the convex hull, the re-
cursion stops and its children are not visited. For each lowest
level block which intersects the convex hull, the visible flag
is set to 1.

(Figure 7) shows the ‘visible’ blocks obtained through the
topdown recursive view frustum culling. Note that the ‘vi-
sible’ blocks are not guaranteed to be inside the view fru-
stum, but simply candidates with which the LOD represen-
tation will be constructed.

4

projection of the view frustum

(Figure 7) The lowest-level blocks intersecting the convex hull
5. LOD Construction and Rendering

5.1 Error metric for vertex removal

As discussed in Section 3.1, a block has 5 candidate
vertices for removal. (Figure 8) (a) shows a simplified block
where top, bottom, left and right vertices are removed
from (Figure 1) (a). Note that, when any of the 4 vertices
Is removed, its height becomes the average of its
neighboring vertices” heights, as illustrated in (Figure 8) (a)
where & denotes the error caused by removing the bottom
vertex.

Projection of 6 onto the screen determines the screen—
space error &,. If §;1s smaller than a pre-defined threshold
r, the vertex can be safely removed. This is exactly what
Lindstrom et al. [14] proposed. For the sake of simplicity
in computing &, however, Lindstrom et al. made strong as-
sumptions which are not reasonable(See [14] for details).
Instead, we use the OpenGL utility function gluProject ()

which maps object coordinates to screen spaces : gluPro-
ject () is invoked with B and B’ respectively and returns
their screen—space coordinates[17]. Then, the distance bet-
ween the two screen-space points is é,. If 8, <z, B is remo-
ved. Unlike Lindstrom et al., we compute the precise error.
However, the computing time turns out a little faster than
the method by Lindstrom et al. because gluProject () ulti-
mately relies on hardware acceleration.

(b) 2 possible triangulations

(Figure 8) Vertex simplification and resulting blocks

As ¢&1is a constant per a vertex, it is computed at the pre-
processing stage. For each frame, & is retrieved and (B, B’
= B +) is used to compute &, through ghiProject (). Note
that storing & (instead of B’) is more storage-efficient.

When the center vertex is removed from (Figure 8) (a),
two triangulations can be made with the remaining 4 ver-
tices. If the block corresponds to either the 0" or the 3 qua-
drant of its parent, we will have the first configuration in
(Figure 8) (b). If either 1 or 2", we have the second
configuration.

Each vertex of the original DEM is represented by the
following Vertex structure. The 1-bit flag check is set to
1 once the screen-space error 8, has been computed for the
vertex. Without check flag, &, would be computed twice be-
cause each of the top, bottom, left and right vertices is shared
by two blocks. If 8, leads to the vertex removal, the impor-
tant flag is set to 0. Otherwise, it is set to 1. The delta
flag stores ¢ computed at the preprocessing stage.

struct Vertex

{
unsigned check : 1 ;
unsigned important : 1 ;
float delta ,

¥

Al

o2t

JER

i)

?IBt BN XNE TEY L2|E 585

5.2 LOD construction in a bottom-up mode

The initialization stage sets all of 13 flags (for triangles
and visibility) of the Block structure to 0, and the check
and important flags of the Vertex structure to 0 and 1,
respectively.

Then, view frustum culling is invoked to traverse the
quadtree in a top-down mode. As a result, a subset of the
lowest level blocks will have visible flags set to 1. For those
blocks, TL, TR, BL, BR, LT, LB, RT, and RB are set
to 1, and T, B, L and R are set to 0, i.e. only the original
8 triangles are made active.

LOD construction is done in a bottom-up mode. It visits
the lowest level blocks with visible flag set to 1. Each block
has 5 candidate vertices for removal : top, bottom, left,
right and center. Because the center vertex is removable
only after all of the other 4 vertices are removed, simplifi-
cation is done in two stages : {top, bottom, left, right} first,
and then {center}.

Any vertex in {top, bottom, left, right} can be removed
only when two triangles sharing the vertex exist in the blo-
ck. For example, removal of the top vertex requires the ex-
istence of TL and TR triangles (See (Figure 1) and (Figure
3)). It might seem that such a condition always holds. How-
ever, it does not always do as will be demonstrated later.

When the above condition holds, the check flag of the
Vertex structure is checked to see if the vertex was already
tested for removal when the adjacent block was processed.
If the check flag is 1, we need to check only the important
flag. If it is 0, the vertex will be removed. Otherwise, the
vertex will remain alive and contribute to the final image.

If the check flag of the Vertex structure is 0, 8, will be
computed using gluProject (). If 8, <z, the vertex will be
removed. For the adjacent block processing, the check flag
is then set to 1 and the important flag is set to 0. If s,
the vertex is not removed, and both the check and impor-
tant flags are set to 1.

When a vertex is removed, related triangle flags should
be changed appropriately. If the top vertex is removed, for
example, the TL and TR flags are set to 0 and T flag is
set to 1.

After the vertex set {top, bottom, left, right} is proce-
ssed, the center vertex is tested for removal. Note that, if
the center vertex is removed, the two resulting triangles (in
either of the triangulations in (Figure 8) (b)). do not belong
to the current block any longer. Instead, they belong to the
parent block. Therefore the visible flag of the current block
is set to 0, and the visible flag of the parent block is set
to 1. This means that rendering is done with the corre-

586 HEXMEIEPI=EX A HO-AF X4=(2002.12)

sponding quadrant of the parent block, not with the current
block. Simultaneously, the corresponding triangle flags of
the parent block are set to 1. If the current block corresponds
to the O quadrant of the parent block, for example, LB and
BL will be set to 1. (They were set to 0 by the initialization
stage.)

(a) 9X9 data (b) Level-2 processed

(c) 0" block at level 1 (d) 1% block at level 1

(e) 2" block at level 1 (f) 3¢ block at level 1

N

(g) Final LOD representation

(Figure 9) LOD construction for (2°+1) x (22+1) - sized height
field

Note that, if a block’s 5 vertices are all removed, its parent
block’s visible flag is set to 1. The recursive bottom-up pro-
cedure of LOD construction visits all blocks with the visible
flag set to 1. (Figure 9) shows the step-by-step procedure
of LOD construction with (2*+1) (2*+1) - sized data. The data
lead to 3-level quadtree. Suppose that all of the 16 blocks
at level 2 (the lowest level) are visible. Also suppose that

(Figure 9) (b) is the result of applying vertex removal
operations to the 16 level-2 blocks. We can see that the 5

shaded blocks’ visible flags are 1 while the remaining 11
blocks’ visible flags are 0.

As level-2 block processing is completed, level 1 will be
processed. According to the above visible flag setting pro-
cedure, the 4 level-1 blocks’ visible flags have been set to
1. (Figure 9) (c) through (Figure 9) (f) show the sequence
of block visits. Suppose that all of 5 vertices are removed
from the 0™ block at level 1. (Figure 9) (d) shows the result.
Then, the 0" block’s visible flag is set to 0, and the parent
(level-0) block's visible flag is set to 1.

Visited next is the 1™ block at level 1. Note that, in (Figure
9) (d), only 4 triangles (TL, LT, LB, and BL) exist in this
block. Also recall that a vertex in {top, bottom, left, right}
can be removed only when two triangles sharing the vertex
exist in the block. Therefore, the left vertex is the only can-
didate for removal in the 1% block. Suppose it is removed as
its &, is smaller than z. The result is shown in (Figure 9) (e).

Suppose all 5 vertices of the 2 block are removed. (Figure
9) (f) shows the result. In the 3 block, only two triangles
(LB and BL) exist and they do not share any vertex in {top,
bottom, left, right}. Therefore, no vertex can be removed
in this block.

(Figure 9) (f) is the result when all level-1 blocks are
processed. The visible flag of the level-0 block has been
set to 1, and so the block is visited for further simplification.
As shown in (Figure 9) (f), only the left vertex is a candidate
for removal as both LT and LB exist. If the vertex is
removed, the result will be that of (Figure 9) (g).

5.3 Crack elimination

Before rendering the LOD representation, crack eliming-
tion should be done. In (Figure 9) (g), vertex v causes a
crack. Our approach to crack elimination is the same as that
by Youbing et al. [25]. We simply suppress the vertex that
causes a crack as illustrated in (Figure 10). This is reaso-
nable in that such a crack-causing vertex has a screen—spa-
ce error &, smaller than . Despite this fact, the vertex rem-
ains in the final LOD representation only for valid triangu-
lation of the mesh. Notice that the crack-causing vertex si-
mply needs to exist for valid triangulation but does not have
to maintain the original height.

crack

(Figure 10) Crack elimination by height adjustment

5.4 Rendering of the LOD data

Rendering can be done either by top- down traverse or by
bottom-up traverse of the quadtree. Starting from either the
highest level or the lowest level, we visit only the blocks
with visible flags set to 1. In each visited block, we render
only the triangles whose flags are 1. After processing all
blocks in the level, recursively visit the next levels until all
active triangles are rendered.

For rendering the next frame, all active blocks and trian
gles are deactivated immediately after being rendered, i.e.
their flags are reset to 0. The next frame rendering starts

by view frustum culling.

6. Implementation Results

(b) Rendering using 1LOD representation
(Figure 11) 513x513 data rendering example 1

(b} Rendering using LOD representation

(Figure 12) 513x513 data rendering example 2

g g 9IS s 8Xe X2 #=% ¢1els 587

We have implemented and tested our approach on
Pentiumd 866 PC with 384M RAM and NVIDIA GeForce2
MX card. Coding is done using Visual C++ and OpenGL in
Windows environment. (Figure 11) and (Figure 12) compare
texture-mapped rendering results using the original 513X
213-sized DEM data and the LOD representation.

The threshold zis set to 0.5, which means that only
sub- pixel-sized errors are allowed. You can notice that
there are little differences between two images in both
figures. (Figure 13) compares rendering results of 1025X
1025 - sized data and the LOD representation. The threshold

r is also set to 0.5 (No texture map is available for this 1025
x 1025 data set.).

Rendering performance is analyzed for 100 frames using

the 513513 data, and depicted in (Figure 14). The average

frame rate is 22(fps), and the average number of triangles
is 7283.

(b) Rendering using LOD representation
(Figure 13) 1025x1025 data rendering

7. Conclusion

We have presented efficient 1.LOD data structures and
algorithms for interactive real-time rendering of terrain data.
Using an inherited indexing scheme, we can achieve very
compact data structures. Efficient algorithms for view frus-
tum culling and bottom-up 1.OD construction are also pres-
ented. Unlike the previous works, we use a precise screen-
space error metric for vertex removal. With the threshold
set to 0.5, we can virtually achieve error-free and popping-
free rendering. Despite this strict error threshold, 22 fps is
achieved on average. The methods presented in this paper
also satisfy almost all of the requirements for interactive
real-time terrain visualization.

588 MEXZIS S =X A MI-AR X4=(2002.12)

8000
7800
7600
7400
7200
7000

6800

The number of triangles

6600

6400
1 10 19 28 37 46 55 64 73 82 g1 100

frame

(a) Numbers of triangles per frame

23
22MMWWMW

1 10 19 28 37 46 55 64 73 82 9t 100

frame rate (fps)
N

frame

(b) Frame rates
(Figure 14) Performance Analysis

References

[1] Balmelli, L., Kovacevié, J., and Vetterli, M., “Quadtrees for
Embedded Surface Visualization : Constraints and Efficient
Data Structures,” Proceedings of IEEE Internationai Con-
ference on Image Processing (ICIP), Vol.2, pp.487-491,
Oct., 1999

(2] Blow, J., “Terrain Rendering at High Levels of Detail,” Pro-
ceedings of the 2000 Game Developers Conference, Mar.,
2000.

[3] Castle, L., Lanier, J., and McNeill, J., “Real-time Continuous
Level of Detail (LOD) for PCs and Consoles,” Technical
Presentation GDC, 2000.

[4] De Berg, M., and Dobrindt, K. T. G., “On Levels of Detail
in Terrains,” 1I1th ACM Symposium on Computational Ge-
ometry, Jun., 1995.

(5] Duchaineau, M. A., Wolinsky, M., Sigeti, D. E., Miller, M.
C., Aldrich, C., and Mineev-Weinstein, M. B., “ROAMing
Terrain : Real-time Optimally Adapting Meshes,” IEEE
Visualization '97, pp.81-88, Nov., 1997.

[6] Ferguson, R. L., Economy, R., Kelly, W. A, and Ramos, P.
P., “Continuous Terrain Level of Detail for Visual Simula-
tion,” Proceedings IMAGE V Conference, pp.144-151, Jun.,
1990.

[7] Garland, M., and Heckbert, P. S., “Fast Polygonal Approx-
imation of Terrains and Height Fields,” Technical Report
CMU-CS-95-181, CS Dept., Cammegie Mellon U., 1995.

[8] Garland, M., and Heckbert, P., “Surface Simplification Using
Quadric Error Metrics,” Proceedings of SIGGRAPH 97,
pp.209-216, Aug., 1997.

9] Gross, M., Gatti, R., and Staadt, O., “Fast Multiresolution
Surface Meshing,” IEEE Visualization '95, pp.135-142,
Oct., 1995.

[10] Heckbert, P. S., Garland, M., “Multiresolution Modeling for
Fast Rendering,” Proceedings of Graphics Interface '94,
pp.43-50, May, 1994.

[11] Hoppe, H., “Progressive Meshes,” Proceedings of SIG-

GRAPH 9. pp.99-108, Aug., 1996.

[12] Hoppe, H., “View-Dependent Refinement of Progressive
Meshes,” Proceedings of SIGGRAPH 97, pp.189-198,
Aug., 1997.

[13] Hoppe, H., “Smooth View-Dependent Level-of-Detail Con-
trol and its Application to Terrain Rendering,” IEEE
Visualization ‘98, pp.35-42, Oct., 1998.

[14] Lindstrom, P., Koller, D., Ribarsky, W., Hodges, L. F., Faust,
N., and Tumner, G. A., “Real-Time, Continuous Level of De-

" tail Rendering of Height Fields,” Proceedings of SIG-
GRAPH %, pp.109-118, Aug., 199%.

[15] Lindstrom, P., and Pascucci, V., Visualization of Large
Terrains Made Easy, IEEE Visualization 2001, pp.363 -370,
Oct., 2001.

[16] Ogren, A., Continuous Level of Detail in Real-Time Ren-
dering, Master’s Thesis, 2000.

[17] OpenGL Architecture Review Board, OpenGL Keference
Manual, Addison-Wesley, 2000.

[18] Pajarola, R. B., Large Scale Terrain Visualization Using the
Restricted Quadtree Triangulation, IEEE Visualization '98,
pp.19-26, Oct., 1998.

[19] Rottger, S., Heidrich, W., Slussallek, P., and Seidel, H. -P.,
Real-Time Generation of Continuous Levels of Detail for
Height Fields, Proceedings of the 6th International Confe-
rence in Central Europe on Computer Graphics and Visu-
alization, pp.315-322, Feb., 1998,

[20] Samet, H.,, The Quadtree and Related Hierarchical Data
Structures, ACM Computing Surveys, Vol.16, No.2, pp.187-
260, Jun., 1984.

[21] Samet, H., Applications of Spatial Data Structures : Com-
puter Graphics, Image Processing, and GIS, Addison-We-
sley, 1989.

[22] Schroeder, W. J., Zarge, J. A., and Lorenson, W. E., Deci-
mation of Triangle Meshes, Proceedings of SIGGRAPH
'92, pp.65-70, Jul., 1992.

[23] Xia, J. C., and Varshney, A., Dynamic View-Dependent
Simplification for Polygonal Models, IEEE Visualization 9,
pp.327-334, 199.

[24] Xia,]J. C., El-Sana, J.. and Varshney, A., Adaptive Real-
Time Level-of-Detail-Based Rendering for Polygonal Mo-
dels, IEEE Transactions on Visualization and Computer
Graphics, Vol.3, No.2, 1997.

[25] Youbing, Z., Ji. Z., Jiaoying, S., and Zhigeng, P., A Fast
Algorithm for Large Scale Terrain Walkthrough, CAD&
Graphics 2001, Aug., 2001

=
EIT

e-mail : lunar36@freechal.com
2001 AF VG FRENTHE
(8H4})
2001~ #A) Aaddsty JRFAFER
A2}
A RO HFH 2P~

st & 3

e-mail : jhan@skku.ac kr

19883 Meuigdw 7BRE 3 SA(EAD

1991d Univ. of Cincinnati Computer
Science(3 &4 A}H)

19963 Univ. of Southern California
Computer Science(¥ 8t8FA})

19961 ~ 19973 National Institute of Stan-
dards and Technology(NIST)

19973~ A Addsty ARFANFET zuy

oA Eob - AFY g8 A CAD/CAM %

