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Optimal Weights for a Vector of Independent
Poisson Random Variables!)

Joo—-Hwan Kim?2)

Abstract

Suppose one is given a vector X of a finite set of quantities X; which are
independent Poisson random variables. A null hypothesis H; about E(X) is to be

tested against an alternative hypothesis Hj. A quantity
Z WX
is to be computed and used for the test. The optimal values of w; are calculated

for three cases: (1) signal to noise ratio is used in the test, (2) normal approximations
with unequal variances to the Poisson distributions are used in the test, and (3) the
Poisson distribution itself is used. The above three cases are considered to the
situations that are without background noise and with background noise. A
comparison is made of the optimal values of ®; in the three cases for both
situations.
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1. Introduction

A beam of neutral particles can be used to estimate the density or mass of an object
(Feller (1970)). A method of discrimination here is to use a neutral particle beam(NPB) aimed
at the object, and a small number of neutron signals are counted at the detector. Beyer and
Qualls (1987) showed that the number of return neutron particles from an object interrogation
for a given dwell time follow Poisson distributon. Kim([4], [5], [6] and [7]) studied an
application of signal processing of return neutron signals from an object irradiated by a
neutral particle beam in the case of one probe-one object-one detector.

To extend the previous studies, we consider the case of one probe-one object- £ detectors.

Independent Poisson counts in £ bins that have different means in each bin are considered.
The objective is also to discriminate between a re-entry vehicle (RV) and a decoy using the
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return signal. Figure 1 shows the situation we consider in this study. This discrimination
problem is formulated as a test of hypothesis:

H, : object is an RV vS. H, : object is a decoy
(The theory of testing hypotheses is given in [8].) The observations without background noise

are formed into a vector of neutron counts in several energy bins: x=(x, X3, ", X,).
The signal X; are independent Poisson random variables. Let
EX=(t,1t, -, t,) under H,
EX=(d,,d;, +,d;) under H,
Then
H,: EX=t¢
Hy : EX=d d{t; for all ¢
To discriminate an object using /% signals from /% detectors, we consider a summary

statistic that is a linear combination of X,

Y= gw,-Xi

where the weight ®; are to be chosen later. Since the w; are to be chosen positive (see
(2.2), (3.3), and (4.1) below), we reject Hy if Y < some critical value c¢. Three methods of

choosing the w; are given and compared.

Object : RV or Decoy

<Fig. 1> One probe-one object- £ detectors case

The first method is based on a signal-to-noise ratio S/N. Maximizing S/N usually is
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intended to maximize the power of the statistical test, defined by the criterion for rejecting

Hy. In the present situation the variance of Y (the test statistic) is not the same under H,

and H;; consequently, maximizing S/N and maximizing power are not equivalent. The second
method of choosing weight is based on maximizing power for normal distribution
approximations with unequal variances under Hj and H;. The third method maximizes power

for the exact Poisson distributions. Note that we only consider the optimal weighting of the
linear combinations of Poisson counts, but it has not been verified here as being able to

discriminate the hypothesis at reasonable risks ¢ and 8.
2. Signal-to—noise

Since the X; are independent Poisson random variables, the mean is

E(Y)= gwi t;
under Hj, but

E¥= 30,4,
under H,. The variance W(Y) is

Y= gw? t, under H,

Wy = gw? d;, under H,

In the theory of testing hypotheses concerning means gy and g, with common variance
o®, the power (probability of rejecting Hy: p=ypy when H: p=p) is an increasing function

of the signal-to-noise ratio(i.e. mean difference between H, and H; over common standard
deviation)

I#o_#ll
—————o .

This suggests that in the present case of the hypothesis testing, one might choose w; to

i;wi (ti—d)
I 210
V Z CU% dz'

where the denominator of (2.1) was chosen to the standard deviation of Y under H,. Since

maximize

S
N

we assume the standard deviation under H, is greater than or equal to the one under H;,

the maximum of signal-to-noise is obtained when we use the standard deviation of Y under
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H, as denominator.

By the Cauchy-Schwarz inequality(Rohatgi [12] p.165), we have

St < (Bura)] (34520

with equality holding if and only if

—d.
wl\/—&—l:K—%dl—’ i=1i2,”‘yk1

for some constant K. In other words, the signal-to-noise ratio is maximized by the choice
t,"_ d,’
;=5

i dz‘

Since any constant multiple of the w; also maximizes S/N, the @; of (2.2) can be rescaled so

that 2@-: 1.

3. Normal Approximation with Unequal Variances

(2.2)

Assume that the independent Poisson distributions P(A,) of the X, can be approximated by
normal distributions. Then, approximately,
Xi~N (/11', 6?)

where A;= cr?= tLor A;= o‘?= d; according to whether H, or H; is true. Also, approximately,

Y~ N( ol 20ia).

The detection rate is 1-— @, where
@ = P(reject Hy when H, is true)

=P(Y<c|EX)=1)

=0 o) =—0"1(1—a), (3.1
V Z“w%ti

where @ is the cumulative distribution function of the standard normal random variable Z.
The false alarm rate is
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B = Placcept Hy when H, is true)
=P(Yc | EX)=d

We assume d;>0. Therefore, the d; will remain in the analysis. So

C— 4 Cl),'d,'
1-8=P|Z< —

gw?di

or
T =0"(1-p) (3.2)

The combination of (3.1) and (3.2), for fixed «, shows that satisfies

01— )= glwi(l‘i"di)‘“@_l(l—a) gw?ti
) \/gw%di

The quantity i}a);( ti—d;) is the "excess” signal under hypothesis H, over that under Hj.
&

lgwi(ti_di)
\/ gw%di

is the signal-to-noise ratio and is just (2.1).

(3.3)

Note that the first term in (3.3):

It is required to find {w; that maximize the function A({w,}) defined by the right-hand
side of (3.3). One can assume that not all w;=0, since otherwise @=1. One first assumes
that w;=0 and investigates all maxima of the resulting function of &—1 variables. Then
assume @;#0 and divide numerator and denominator of (3.3) by w; and put ;= w;w;,
i=2,3,--,k Then h({w;}) becomes a function k—1 of variables: h({ w;}). A sufficient
condition (see Luenberger [9]) that the point #A({ _(Z)—,-* }) be a strict local maximum for 7% is
that v Aa({ ZJ_,-* D=0 and that the matrix v 2h({ Z,»* }) be negative definite. This condition

can be verified by checking that the eigenvalues of the matrix Vzh({ Zi*}) are negative.

Finally, having checked all strict local maxima, it is necessary to insure that the function does
not become elsewhere greater than its value at one of the strict local maxima. There are
other possibilities that must be checked such as nonstrict maxima.
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This procedure will be illustrated in only one case: k=2. Assume ;0. Put x=2)_2

= w,/w;. Then

(t—d)+(t—d)— 0 'U—aV P+
\/x2d2+d1

After calculating % (x)=0, transposing a square root and squaring both sides, a quadratic

Wx)= (3.4)

equation in x is obtained:
[dy (t,— d)x— di(t,— d) 1 (5 + 1) — (dity— t,dy)* 07 (1 — @)x*=0. (35)

In the special case that dy=1, d»=2, t, =3, t,=4, 0 '(1— a)=4, equation (35) reduces
to 16x*—16x°—12x+3=0 which has two real roots, only one of which gives a value zero to
B :x=1.3998"--: and %"(1.3998:--)<0. The condition w;+ wy,=1 finally gives w;= .4274--,
wy= .5726---. Since h(0)<0 and A(c0)=—V2, there is no other maximum value of %(x) to
the special case.

For the case £=3, % in (3.4) becomes bivariate function of Z} and Z; and we may find

the maximum point for some specified values of the parameters. For general % /& becomes

k—1 variate function of 3, @}, =, wh
4. Optima Weights for Poisson Distributions

For Poisson counts in one energy bin, Beyer and Qualls [1] give a rather complete
analytical analysis. For two energy bins, the discrimination surface, analogous in the
discrimination curve in Kim [6] is a mapping of R? to R? For this analysis, one needs to
develop one or more test statistics. In this section we give an optimal test statistic based on
the observation that to minimize B is to maximize the power 1— 8 We seek the most
powerful (MP) test of the hypothesis Hj. The Neyman-Pearson lemma [8, p.74] computes the
MP test in terms of a

rejection region= { x| _%((&x% >K },

where

x; —d:
di'e “[x!
. Ll a; i ti (t;—d)
’ I_i ti xe x/xi! H
is the likelihood ratio. The MP test has the form

Reject Hy if y= ﬁla),-x,»s c,
~“
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H g ]! .

i

Again, we can rescale the w; so that 20)1': 1.
&

5. Optimal Weights with Background Poisson Noise

We have considered the situation in section 1 to section 4 without background Poisson
noise. In this section we consider the case with background Poisson noise. The observations
are formed into a vector of neutron signals and noise counts in several energy bins:

x=(xi+xf, x5+ x5, -, x5+ x5).
where the signal X} and background noise X7 are independent Poisson random variables. Let

(#,ty, . t,) under H
EX’=

(dy,ds, -, dy) under H,
EX"=(ny, ny, -, np) under both H; and H,

Then

Hy: EX=EX'+EX"=t+n

H,: EX=EX'+EX"=d+n , di{t; for all ¢

For a test statistic Y= 2 wX, the mean E(Y) is ga),-(tl-+ n;) and g‘wi(d{-i- n;)

under H, and H,, respectively. The variance W(Y) is gw%(ti-F n;) under H; and
Zw?(a’ri— n;) under H,.

Signal-to-noise ratio with background Poisson noise becomes

gwi(h—d{)

= (5.1)
30 (dit n)
and the optimal choice that maximize the signal-to-noise is
t,"’“ d,’
wi= d,+ n; ) (52)

For a test with normal approximation, similar to the procedure in section 3, we have
Cc— 2(0,‘(1’,“" ni)
=

| Zat )

=0 a)=—0"'(1—a), (5.3)
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and

c— Z‘la)i(a’ﬁ n;)

\/ z2%(0?((1’,-4- n;)

The combination of (5.3) and (5.4), for fixed @, shows that satisfies

lgwi(t,-— d)— 01— “)\/m

=0 Y (1-p) (5.4)

o' 1-p= (5.5)
| S0t (ditn)
For the case k£=2, as we had demonstrated in section 3, we have
h(x): X(tz“dz) +(t1“" dlz)_ (D—l(l—a/)\/ xz(t2+ %2)"’ t1+ n (56)
\/x (d2+ n2)+d1+n1
Put H=t+mny, ty=t,+n, dy=d,+n and dy=d,+ ny Then (56) becomes
— = — i —

Vildy+ d,
and equation (5.7) is same form to (3.4).

For a test with exact Poisson distribution, similar to the procedure in section 4, the MP
test has the form

Reject Hy if y= ﬁ"a)ixis c,
P

where
0, = log ”QTZ- (5.8)

6. Comparison and Remark

We now have three methods of calculating weights: (1) S/N, (2) normal approximations, and
(3) Poisson MP test. In this section we compare the optimal weights for three methods.

First of all, comparison is made in the limit for large Poisson counts without background
noise. Let ¢,= p;d; with p;>1 for all 7 Then consider the limit of the w; for the three

methods of this paper as the decoy counts become infinite, i.e. as min(d;)—<o.
For the S/N method, we obtain

t,-—d,' t; .
0= =—d;~l=t>,'—1—>p,»—1 as min(d;)—> 6.1)

For the Poisson MP test method. we obtain
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t; .
w;= log(?) = log (p,) — log(p,) as min(d;)—. 6.2)

For the normal approximation method, we further specialize the limiting process so that the
decoy counts d;=vd? for &?=0 for all i with v—oo. Expression (3.3) becomes
V2 d? V 20id '
The second term of (6.3) for various choices of the w; is bounded above (and below), since

the min(d%)>0. Consequently, as v—0, the first term dominates and the @, that maximize
(6.3) converge to the S/N weights; ie. w;— (p,—1) as yv—

Secondly, we compare the optimal weights with background noise as the amount of signal
and noise becomes infinite. Let d;=0 and #,>0 for all i, and ¢;= p»,; with p,=0 for all 7
Then, similar to the above setup, we obtain the limit for the S/N method,

t; .
w;= 7’ =p;,— p; as min(n;)—o0 (6.4)
H
For the Poisson MP test method, we obtain

i+ ] ,
w;= log ( £,+:; Y=log(1l+p,) — log(1+p,) as min(n;)— oo (6.5)

For the normal approximation method, the w; that maximize

i} V20l (1+p)nd
\/—Zwtplnl__@—'l _ Wi U U 6.6
€537 7 IR S s (66

converge to the S/N weights; i.e. @;— p; as v— o0, where n;= vn? for all i

It is interesting that the normal approximations to the Poisson distributions implicitly
included in (3.3) and (6.3) become better as #; and d; become large (v—c0) but the wo; that

maximize S/N do not converge to the Poisson MP test weights. Same properties can be found
to the case with background Poisson noise.
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