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Dynamic Added Variable PlotsD)

Han Son Seo?)

Abstract

Partial residual plots, augmented partial residual plots and CERES plots are basic
diagnostic tools for dealing with curvature as a function of specific predictors in
regression problem. However, it is known that these plots can miss a curve or show
a false curve in some cases such as predictors are related each other. Dynamic
display of these plots is developed and applied. Examples demonstrate that dynamic
plots are useful for obtaining additional information on the curvature.

Keywords © ARES plot, Augmented partial residual plots, CERES plots, Partial residual plots,
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1. Added variable plots

Consider a regression model:

Y=H/+Xs+A2)+e (1.1

where B, is an unknown (p—1)x1 vector, Z is an explanatory variable, € is

independent of X and Z, and f is unknown function. Then a model in which a new

explanatory variable W is included to the Eq. (1.1) is defined as
Y=ay+ Xa,+ g(2) + yW+e. (1.2)

As a variable W is added to the model (1.1), the function of Z 1is affected. From Eq.
(1.1) and (1.2) conditional expected values are calculated as

E(Y| X, Z W)= a,+ Xa,+ g(2)+ yW, E(Y| X, Z)=8,+XB+RA2) and
EY|X,Z2) =ay+Xe,+e(2)+yE(W| X,Z). If, given Z, W is independent of X then
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By=ay, By=a; and AZ)=g(Z)+yE(W| Z). This article concerns a development and a

comparison of dynamic plots of various graphical methods, displaying the impact caused by
smooth transition between the fit of (1.1) and the fit of (1.2).

For visualizing f in (1.1) several graphical methods including partial residual plots,

augmented partial residual plots and CERES plots are suggested. Partial residual plots (Larsen
and McLeary, 1972) are constructed based on the model

Y=ay+ Xa,+ Zb+ error (1.3)
and obtain coefficient estimates by minimizing a convex objective function :

(g a; b)=argmin L ,(ay, a;, b) (1.4)
where L,(aq,a,, b)=% ;L(y,-~a0—x,-a1—z,-b) and L is a convex objective function. A

partial residual plot for Z is described as the plot of e+ Zb versus Z and is expected to
depict f correctly only with variability caused by error when £ is linear or E(X | 2Z) is
linear in Z. But to have a firm information indicating that f is linear when a partial residual
plot is linear, the condition that E(X | Z) is linear in Z is always required. When conditional
expectations E(X | Z) are all linear, partial residual plots would be enough to examine the
curvature in regression problem. Partial residual plots are especially good for detecting curve,
even if there is substantial collinearity. But it does not work well if there are nonlinear
relationships among the predictors.

Augmented partial residual plots are another diagnostic plot, suggested by Mallows (1986),
to improve the ability of partial residual plots. Augmented partial residual plots replace the

model (1.3) with a model containing a quadratic term in Z :

Y= 0o+ Xo1+ $,.Z+ 2%+ error. (1.5)

An augmented partial residual plot for Z is construct as the plot of e+ a\lZ + @Zz versus
Z where coefficient estimates are obtained by minimizing a convex objective function defined
in (1.4). Evidently augmented partial residual plots can depict f better than partial residual
plots if ¢ Z+ ¢222 provides a better approximation of AZ). If f is exactly quadratic or
E(X|2) is a quadratic in Z then augmented partial residual plots reflect the form of f
accurately with random variation. Whatever the form of f is, an augmented partial residual

plot can display f better than a partial residual plot.
CERES plots, an abbreviated acronym for "“Combining Conditional Expectations and
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RESiduals” were suggested by Cook(1993). To depict f accurately it is required that
E(X | Z) should be included in the function of Z as a special case. If we let the model be

Y=ay+ Xa,+ E(X | 2)b+ error (1.6)

then estimate 21 in (1.4) converges almost surely to £, in (1.1), and consequently
e;+E(X|Z)b converges to constant+ AZ)+ e, CERES plots use e+ E(X|2)b on the
vertical axis and Z on the horizontal axis. E(X | Z) can be modeled either parametrically or
nonparametrically. If E(X | Z) is linear in Z CERES plots are same as partial residual plots.
And if E(X| Z) is quadratic in Z CERES plots are same as augmented partial residual
plots. CERES plots are designed to work well even when predictors are arbitrary noise
function of each other or when FE(X|Z) are neither linear nor quadratic. But Many
examples show that the efficiency of CERES plots depends sensitively on the accuracy of the
estimated value of E(X | 2).

Johnson and McCulloch(1987) compared partial residual plots and augmented partial residual
plots. They suggested another plot based on locally linear approximation method. Berk and
Booth(1995) also compared nine graphical methods including added variable plot, partial
residual plots, augmented partial residual plots and CERES plots. Cook(1993) extended the
residual plot to three dimensions and showed how 3-D partial residual plots can be applied
(Cook and Weisberg, 1994). Berk(1998) showed that 2-D add variable plots, partial residual
plots, augmented partial residual plots are included as views in the 3-D plots.

In section 2 dynamic plots are constructed using partial residual plots and augmented partial
residual plots for the specification of function f at each plot in the animation. Section 3
includes examples which were selected to show that the dynamic display of these plots,
including animated CERES plots (Seo, 1999), can give us a warning against detecting false
curve or missing a curve. Section 4 contains concluding remarks.

2. Dynamic plots

The effects of adding a variable W to the model (1.1) can be identified by displaying
smooth transition between the fit of (1.1) and the fit of (1.2). For this purpose the idea of
ARES plot, proposed by Cook and Weisberg(1989, 1994), can be applied. ARES plot is
designed to show the impact of a set of added predictors between two models,

Y=8,+XB +e¢ 2.1)

and
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ARES plot begins with a smaller linear model then smoothly add a predictor W according
to some control parameter A=[0,1] so that A=0 corresponds to fitting (2.1) and when A=1
full model (2.2) is fit. The plot consists of some specific aspect of the fitted, such as a plot of
77\,; versus e¢;, where 5; e, are, respectively, the fitted values and residuals obtained when
the control parameter is equal to A.

Now we use partial residual plots instead of using residual plots in the ARES plot

procedure which begins with model (1.1) and then smoothly adds W, ending with fit of the
full model (1.2). Consider the following model:

Y=X'a+ Zb+ yW+ e
= Us+ yW+e (2.3)
where X' =(1,:X) is n by p fixed known matrix , a=(a0:a1T)Tis p by 1 vector, b is
a scalar and W is # by 1 known vector, ¥ 1is an unknown scalar and
U=(X":2) 6=(a"b)7. Let Q, be the projection operator on the orthogonal complement

of the space spanned by the columns of U. Then modified version of (2.3) is
Y=Us"+7y"Wte (2.4)

where W= Q,W/1Q.Wll, &' =6+HUU)'U'W. For each 0 < A < 1 we estimate
a=(8" 7" by

1-4
A

a;=(V'v+ ccH) vy (2.5)
where ¢ is a 2p by 1 vector of zeros except for a single 1 corresponding to W, and .
V=(U:W. And for each A and Zr\,l, we denote the corresponding estimators as

/8\,1, ?,1, fz\/l, ??\,; Zr\,l is a ridge estimator. The ordinary ridge regression estimator of Hoerl

and Kennard (1970) is based on k&I rather than 1;/1 ccT in (25) to portray the sensitivity

of the estimates to the particular set of data being used. Zr\,], with l;'{ ccT represents the

effect of adding variable W. For a particular value of A the residuals and fitted values from
the fit of (2.4) are respectively

YV, =U0UTO) ' UTY+ AWM W WY
e;=et(1-DWMW'W W'y
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where e is residual from the fit of model (24). At A=1 @, is the ordinary least squares
regression of ¥ on U and W. When A= ZI\A corresponds to the estimate in the fit of
the regression model of Y on U. As A increases from 0 to 1, Zr\,l becomes a sequence of
estimators that represent the effect of adding W smoothly to the smaller model. Thus an
animated plot of eA+Z/b\/} versus Z, where ¢,= Y— U@— %W gives a dynamic view of

the effects of adding W to the model which already includes X and Z.
For an animated augmented partial residual plot the following model is considered:

Y=pp+ Xo,+ ¢$,Z+ ¢:2° + yW ¢

Y=X"'a+ Db+ yW+ ¢
=Us+ yW+ ¢ (2.6)

where X*=(1,X), D=(Z:Z%, nby p and » by 2 fixed known matrix respectively,
a=(ap:aD)Tis p by 1 vector, b is 2 by 1 vector and U=(X":D) 8=(a’b")7.
Following the expressions in the model (2.4) and estimators in (2.5) an animated augmented
partial residual plot can be constructed as a plot of e+ (E(X | Z2)— E(2))b, versus Z,
where ¢;= Y~ U/8\,1— %W Animated CERES plots were constructed by letting
D= E(X| Z)— E(Z) in the model (2.6) and defined as e;+ (E(X | Z2)— E(2)b, versus Z,
where e, = Y— US,— 7,W (Seo, 1999).

3. Examples

It is known that diagnostic plots fail to detect a curve correctly for some cases (Berk and
Booth, 1995; Cook, 1996). For example, CERES plots and augmented partial residual plots
could give false curve when a curve really does belong to another variable. We apply dynamic
plots developed in section 2 to the cases that usual diagnostic plots do not work well.
Customized animation plots displayed throughout the examples are coded by using Xlisp-stat.
(Tierney, 1990).

Examples are considering the problem of hidden variable with four predictors x;, x3 , X3
and x;,. Assume that x; is defined by x4~#(x3) and dependent variable y is related with

predictors by one of following models:

y= 2+ %+ h(x3) +N(0,0.19), (3.1)
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y=1x+2x+x,+N(0,0.1%. (3.2)

Then diagnostic plots for x3 with predictors x;, xo may give same image for both of
model (3.1) and (3.2). To determine the true model between (3.1) and (3.2), animated plots

of x3 with adding variable x, are applied. Several cases are considered according to the
different form of #(x3) which is assumed to be either linear or quadratic or cubic.

Data for examples are artificially created. x3 is consist of 100 values spaced evenly between
-1 and 1 including values -1 and 1. Then x, is defined by x;= A(x3) +MN(0,0.1%. x, and

x, are two independent normal random variables with mean 1 and variance 52
Case A : h(x;;) = X3

Dependent variable y was generated according to the model (3.1) with A(x;)= x3. With
adding variable x4, Figure 1 shows animated plots of partial residual plots, augmented partial
residual plots and CERES plots for x3 of independent variables x;,x, and x3. Loewss
smocths are superimposed. Four frames of animated plots in Figure 1 correspond to A = 0,
0.3 0.6 1 respectively. The first frames of three diagnostic plots show a substantial linearity.
As A moves from O to 1 partial residual plots and augmented partial residual plots still imply
a linear relationship, but CERES plots do not show any trend.

With the same data of x;, x5, x3 and x4, dependent variable y is defined by the model (3.2).
Animated plots with these data are shown at Figure 2. The first frames of three diagnostic
plots show a linear trend. But as A moves from 0 to 1 neither of them shows a perceptible
line. When A=1 that is, x,; is fully included, CERES plot does not show any trend with or
without x3; in the model. This is partly because of indeterminacy of CERES plots (Cook,
1995) caused by the fact that x4 is nearly a function of x3;. But it is mainly because the
estimated values of expectation of predictors given x3 are not certain.

As we can see at Figure 1, Figure 2, diagnostic plots for x; with predictors x;, x3, X3
draw a straight line regardless of inclusion of x5 to the model. But we can get a clue to find
a true model from animated plots. If partial residual plots and augmented partial residual plots
for x3 show a linearity both with and without predictor x4, then we do have information
indicating that the function of x5 is truly linear. But if partial residual plots and augmented
partial residual plots for x3 do not show any trend with adding variable x4 then the linearity

of x3 implied by partial residual plots and augmented partial residual plots with predictors
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X1, %3 and x5 is wrong and the correct model does not involve xj.

Now we consider a case that the behaviors of partial residual plots and those of
augmented partial plots are different.

(¢) Animated CERES Plots
Figure 1. Animated plots under model (3.1) for Case A. A = 0, 0.3, 0.6, 1.
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Case B : h(x3) = x3

Because of the quadratic terms in x3 and the quadratic relationship between x; and x4,
augmented partial residual plots can retrieve a curve in this case. Animated plots for x; with
adding variable x4 are displayed at Figure 3 and Figure 4, in which dependent variable y is

defined by the model (3.1) and (3.2) respectively. When A=0,
A moves from 0 to 1 only augmented partial

(c) Animated CERES Plots
Figure 2. Animated plots under model (3.2) for Case A. A = 0, 0.3, 0.6, 1.

Figure 3 and Figure 4 show a curve. As

residual plots at Figure 3 keep showing a curvature but none of diagnostic plots at Figure 4

three diagnostic plots at
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shows a clear curve. So if an augmented partial residual plot with predictors x;, X, and x3
shows a curve in x5, and keeps showing a curvature throughout the display of animation, it
indicates that the function of x5 is really quadratic. But if augmented partial residual plots
do not show any trend with adding variable x4 then augmented partial residual plots showing
a curve in x3 with predictors x;, x3 and x3 give false alarm about the need for transforming
x3. CERES plots may show a curve in this case with A=1 as in Berk and Booth( 1995).

But as mentioned early, because of the uncertainty of estimation of conditional expectation it
does not show any trend.

mmuomao
0 0.5

-0.5

-1

(c) Animated CERES Plots
Figure 3. Animated plots under model (3.1) for Case B. A = 0, 0.3, 0.6, 1.
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(c) Animated CERES Plots
Figure 4. Animated plots under model (3.2) for Case B. 4 = 0, 0.3, 0.6, 1.

Case C : h(x;)= x%

When cubic relationship is involved in the model or in the relationship between predictors,
unlike in case A and case B, neither of partial residual plots nor augmented partial residual
plots work well. Under the model (3.1) and (3.2) the behaviors of plots are nearly same. When

A=, plots show a cubic but as A moves from 0 to 1 none of diagnostic plots shows a

curve. So when an augmented partial residual plot with predictors x;, x5 and x3 shows a

cubic in x5, it is not easy to know the inclusion of x3 in the correct model from the
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animation. CERES plots in this case do not look useful either. We skip the figures of this
case.

4. Concluding remarks

Though partial residual plots, augmented partial residual plots and CERES plots are used
widely for detecting a curve, for some cases they may give an uncorrect curve or a false
curve of a predictor which is not involved in the model. Useful information regarding these
problems can be obtained by animating plots. Especially when a visualized image is linear or
quadratic, animated augmented partial residual plots can be helpful to discern between two
specific models. Behaviors of animated CERES plots heavily depend on the accuracy of
estimated values of conditional expectations and indeterminancy caused by a functional
relationship among predictors.
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