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On Optimal Burn-in and Maintenance Policy

Myung Hwan Nal’ and Young Nam Son2)
Abstract

Burn-in is a widely used method to eliminate the initial failures. Preventive
maintenance policy such as age replacement is often used in field operation. In this
paper burn-in and maintenance policy are taken into consideration at the same time.
The properties of the corresponding optimal burn-in times and optimal maintenance
policy are discussed.
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1. Introduction

Burn-in is a method used to eliminate the initial failures of components before they are put
into field operation. The burn-in procedure is stopped when a preassigned reliability goal is
achieved, e.g. when the mean residual life is long enough. Since burn-in is usually costly, one
of the major problem is to decide how long the procedure should continue. The best time to
stop the burn-in process for a given criterion to be optimized is called the optimal burn-in
time. An introduction to this important area of reliability can be found in Jensen and Petersen
(1982). In the literature, certain cost structures have been proposed and the corresponding
problem of finding the optimal burn-in time has been considered. See, for example, Clarotti
and Spizzichino (1991), Mi (1994), Cha (2000) and Block and Savits (1997) for a review of the
burn-in procedure.

Let F(# be a distribution function of a lifetime X. If X has density A# on [0, o),
then its failure rate function A(#) is defined by #(f)=AH/F({) where F(H)=1—F(t) is
the survival function of X.

It is widely believed that many products, particularly electronic products such as silicon
integrated circuits, exhibit bathtub-shaped failure rate functions. This belief is supported by

much experience and extensive data collection by practitioners and researchers in many
industries. The following is one definition of a bathtub-shaped failure rate function which we
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shall use.
Definition. A real-valued failure rate function A(# is said to be bathtub-shaped failure rate

(BTR) with change points # and ¢, if there exist change points (0<f<#<{% such that
n(#) is strictly decreasing in [0, #), constant in [# #;) and then strictly increasing in
[t;, ).

The time interval [0, #] is called the infant mortality period; the interval [¢#,#], where

#(P is flat and attains its minimum value, is called the normal operating life or the useful
life; the interval [#;,o0) is called the wear—out period.

The most common popular maintenance policy might be the age replacement policy. Under
this policy a failed component is always replaced at the time of failure or T hours after its
installation, where 7T is a fixed number, whichever occurs first. Once a cost structure is

established to model the total cost related to the maintenance policy adopted, an optimal T is

v

determined (denoted by 7T and called the optimal maintenance policy) such that the cost will

be minimized. Under the assumption that the underlying distribution F' has increasing failure
rate function, Barlow and Proschan (1965) have shown that an optimal age replacement policy
exists, but may be infinite.

The optimal maintenance policy, however, clearly depends on the distribution function of the
component used in operation. It is thus natural to take both burn-in and preventive
maintenance into consideration. That is, models are required to describe the total cost incurred
by both burn-in and maintenance. To this end we determine the optimal burn-in time and
optimal maintenance policy so that our cost function is minimized.

Mi (1994) consider the following procedure. Consider a fixed burn-in time & and begin to

burm-in a new component. If the component fails before burn-in time &, then repair it
completely with shop repair cost, then burmn-in the repaired component again and so on. He
assume that the repair is complete, ie. the repaired component is as good as new. If the
component survives the burm-in time &, then it is put into field operation. The cost for
burn-in is assumed to be proportional to the total burn-in time. For a burned-in component
he consider the age replacement policy. He discuss the properties of the optimal burn-in and
optiaml maintenance policies. Cha (2000) consider that the failed component is only minimally
repaired rather than being completely repaired during a burn-in period. He adopt block
replacement policy with minimal repair at failure as it was in Mi (1994).

In this paper we consider the following burn-in procedure. Consider a fixed burn-in time &
and begin to burn-in a new component. If the component fails before burn-in time &, then
only minimal repair is done with shop repair cost, and continue the burn-in procedure for the
repaired component. Immediately after the fixed burn-in time &, the component is put into

field operation. Note that the total burn-in time of this bum-in procedure is a constant b. For
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a burned-in component, age replacement policy with complete repair is adopted.
In this paper we assume the distribution F of the original component (i.e. before burn-in)

has a BTR function %(®. Under this assumption the conclusion obtained is that the optimal
burn-in time &* must occur before the first change point # of #(#) and the sum &+ T"

must occur the second change point # of A(d.

2. Burn—-in and Maintenance Policy

Consider a fixed burn-in time & and begin to burn-in a new component. If the component
fails before burn-in time b, then only minimal repair is done with shop repair cost ¢ >0, and
continue the burn-in procedure for the repaired component. Note that the total burn-in time of
this procedure is a constant &. The cost for burn-in is assumed to be proportional to the

total burn-in time with proportionality constant c¢p. Then the total expected cost incurred by

burn-in is the sum of the cost for burn-in, ¢yb, and the expected cost of minimal repairs,

b
csfo h()dt,
b
C(b) = c0b+csf0 W(Ddk. 1)

b
where fo h(H)dt is the expected number of minimal repairs during the burn-in period.

Immediately after the fixed burn-in time b, the component is put into field operation. For a
burned-in component we adopt age replacement policy with complete repair described in

Barlow and Proschan (1965). Let ¢, denote the cost incurred for each failure in field operation
and ¢, satisfying 0<c¢,{c; the cost incurred for each non-failed item which is replaced at

age 170 in field operation. If we use only items which have survived the burn-in time &,
then total expected replacement cost is the sum of the expected cost incurred by replacement

at age T and the expected cost incurred by failure replacement before T
Co(T) = Cbe(T)‘f‘Cer(T), (2
where F,(7T) is the conditional survival function, i.e. Fj(x)= F(b+ %)/ F(b).

The total expected cycle length is the sum of the expected length of a replacement for
non-failed item and the expected length of failure cycle;

_— T T__
T Fyo( T+ fo ty(Ddt= fo Fy(Dadt. 3)

Hence, from (1), (2) and (3) the long-run average cost per unit time C(b, T) is given by
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cotc. [ h(Ddtt e T)+ ¢, Fy(D)
foTT«‘,,(t)dt

(co+ csfobh( NADF(b) + cAF(b)— F(b+ 1)+ ¢, F(b+ T)

Cb,T) =

1

T
J, o+ par
The result regarding the optimal burn-in time &° and the optimal age 7" which satisfy

* *\ min
CB" T = s o0 S0 D

is given in the following theorem.

THEOREM 1 Suppose the failure rate function A(# is differentiable and BTR with change

points ¢ and {,. Then, the optimal burn-in time b* and the corresponding optimal age
T'= T, satisfy
0< b*stl and b*+ T*z b*+ Tb'> tz_

where T, is either the unique solution of Equation (4) or equal to o depending on whether

(4) has a solution or not.

b
T I — citeyt+ces | h(Ddt
h(b+T)f0 F(b+ 1) di+ Fo+T) _ fo

F(b) RO cr= ¢y ' @

3. Proof of Theorem 1

For any fixed b=0

b
F(O)F(b+ e, o) ort ayt e, [ H(Dat
7(T) —

(fOT?(b+ dp? CrCr

_0_ _
3T (b, T)=

, (5)

where

Hence 9C(b, T)/dT=0 if and only if

b
¢t cpt+ csfo h(Hdt

Cs—Cy

77b( T)=

Taking partial derivative with respect to 7T one can obtain
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75 (T) =k (b+ T)fOTﬂ—FlE—“;)Q dr.

Hence from the BTR assumption of 4(#) it follows that
strictly decreasing if 7<¢ — b,

7:(T) is { constant if 4—b<T<t,—b,
strictlyecreasing if T=#—b.
b
Note that (c,+¢y+c¢ Sfo tyaty/(c,—c)>1, 70)=1 and 7,(7T) is non-increasing for all

T such that 7T<t,—b. Thus by (5) we immediately obtain that 9C/dT<0 if T<t,—b.

This imply that we have b+ T3>t for all 5>0, where Tj is either ©© or the unique

solution of equation (4) and satisfies

C(b, T;)= ?;% C(b, T), for all b=0.

Define the mean residual life function wu(#)= f: F(w)du/F(D. Then it is easy to see that

7p(00)= lim 2( T) = h(0)u(b). Let By={b=0: T3<0}. Then clearly

Bl=

b
et et csf h(Ddt
b=0: 7,(0)> 0

Csr— Cy

b=0: h(oo)u(b)>

b
C/+ C0+ Csf(; h(t)dt}

Cr— C,

Now we need the following lemma.

Lemma 1 (Mi, 1995) Let the mean residual life function u(#) achieve its maximum value at
b. Then

() 0<b<yy
strictly increasing if0<i<?¥,

(2) u(d is [
strictly decreasing if = .

5
From Lemma 1 it is easy to see that (c,+ cO-I-csf0 W(HdD/p(b) is strictly increasing in

b>b. Now we need to consider two cases <Case 1> B;=¢ and <Case 2> B+ 4.

In case 1 we have T,=o0 and for all &) ¢,
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b 4
. crt c0+csf0 Hdt cp+ Co'f'Cst h(Hadt
Clb. T = Clbeo) = #(B) ey

= C(t, )

and consequently in this case b*s;‘l and Tj=co.

For case 2, we can see the optimal burn-in &° satisfies b*< t; applying the same method
in the proof of Theorem 1 in Mi (1994).

Consequently, the optimal burn-in 4" and the corresponding optimal age 7 = T, satisfy,

Osb*stl and b* + T*: b*+ T*b'> ty.
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