Characteristics of cordierite ceramics filled with alumina platelets

판상형 알루미나 첨가에 의한 코디어라이트의 미세구조 및 물성 변화에 대한 고찰

  • 이상진 (목포대학교 신소재공학과) ;
  • 조경식 (금오공과대학교 재료공학과)
  • Published : 2002.12.01

Abstract

Densified cordierite matrixes added alumina platelets were studied as a ceramic substrate material having a low thermal expansion coefficient, low dielectric constant and proper strength. Amorphous-type cordierite powders were filled with four kinds of alumina platelet powders in various compositions. All samples were sintered at $1300^{\circ}C$ for 2 h in an air atmosphere. Improved flexural strength of about 80 MPa, low dielectric constant of 5.0 at 1 MHz and low thermal expansion coefficient of $3.5 \times 10^{-6}/^{\circ}C$ were obtained by the control of the microstructure. Isolated micropores were formed in the matrix and the porosity was dependent on the platelet content and size. In the 10 vol% of alumina platelet content, the isolated micropores were 3~8 $\mu \textrm{m}$ in size, and an increase in dielectric constant by adding alumina platelet filler was inhibited by the micropores.

비정질 코디어라이트에 판상형 알루미나를 첨가하여 미세구조를 제어함으로써 저 유전율과 저 열팽창계수를 갖는 세라믹 기판재료를 연구하였다. 판상형 알루미나는 4종류의 크기를 갖는 분말을 사용하였으며, 그 첨가량을 달리하며 각 조성의 기계적 성질, 유전상수, 및 열팽창계수의 거동을 고찰하였다. 슬립 케스팅 후 $1300^{\circ}C$에서 2시간 동안 소결된 시편은 순수한 코디어라이트에 비하여 80 MPa의 향상된 강도치를 보였으며, 실리콘 칩의 열팽창계수에 접근하는 $3.5 \times 10^{-6}/^{\circ}C$의 열팽창계수 값을 보였다. 판상형 알루미나의 특성에 의해 형성된 소결체 기지내의 고립기공은 알루미나의 첨가에 의해 발생되는 유전상수의 증가를 억제시켰으며, 1 MHz에서 5.0의 유전상수 값을 나타내었다.

Keywords

References

  1. Advanced in Ceramics v.26 Low-K and Low-T Sintering Materials for Multilayer Circuit Boards K. Niwa;Y. Imanaka;N. Kamehara;S. Aoki;M.F. Yan(ed.);K. Niwa(ed.);H.M. O'Bryan(ed.);W.S. Young(ed.)
  2. Advanced in Ceramics v.26 Low-Temperature, Cofired, Multilayer Ceramic Packages Containing Copper Conductors and AIN Heat Sinks K. Kondo;M. Hattori;Y. Matsuo;Y. Shibata;M.F. Yan(ed.);K. NiWa(ed.);H.M. O'Bryan(ed.);W.S. Young(ed.)
  3. Advanced in Ceramics v.26 Thermal, Mechanical, and Dielectric Properties of Mullite-Cordierite Composites R.A. Anderson;R. Gerhardt;J.B. Wachtman;D. Onn;S. Beecher;M.F. Yan(ed.);K. Niwa(ed.);H.M. O'Bryan(ed.);W.S. Young(ed.)
  4. J. Am. Ceram, Soc v.68 Coalescence and Crystallization in Powdered High Cordierite Glass K. Watanabe
  5. IEEE Trans. Comp. Hybrids. Manuf. Technol. v.6 Low Firing Tempearture Multilayer Glass-Ceramic Substrate Y. Shimada;K. Utsumi;M. Suzuki;H. Takamizowa;M. Nitta;T. Watari https://doi.org/10.1109/TCHMT.1983.1136194
  6. Ceram. Eng. & Sci. Proc. v.19 A Preparation of Ceramic Powders by Solution Polymerization Employing PVA Solution S.J. Lee;W.M. Kriven https://doi.org/10.1002/9780470294499.ch55
  7. J. Mater. Res v.14 Synthesis of Oxide Powders Via a Polymeric Steric Entrapment Precursor Route M.H. Nguyen;S.J. Lee;W.M. Kriven https://doi.org/10.1557/JMR.1999.0462
  8. J. Am. Ceram. Soc. v.81 Crystallization and Densification of Nano-Size, Amorphous Cordierite Powder Prepared by a PVA Solution-Polymerization Route S.J. Lee;W.M. Kriven https://doi.org/10.1111/j.1151-2916.1998.tb02667.x
  9. J. Am. Ceram. Soc. v.79 Stereological Observations of Platelet-Reinforced Mullite and Zirconia Matrix Composites I.K. Cherian;M.D. Lehigh;I.Nettleship;W.M. Kriven https://doi.org/10.1111/j.1151-2916.1996.tb08105.x
  10. Ceramic Transactions v.74 Mechanical Properties of Cordierite-Based Composites Obtained by Sol-Gel Techniques M. Pinero;C.B. Solano;C.J. Solis;L. Esquivias;J. Zarzycki;N.P. Bansal(ed.);J.P Singh(ed.)
  11. Advanced in Ceramics v.26 Low-Permittivity Porous Silica by a Colloidal Processing Method W. Cao;R. Gerhardt;J.B. Wachtman, Jr;M.F. Yan(ed.);K. Niwa(ed.);H.M. O'Bryan(ed.);W.S. Young(ed.)
  12. Am. Ceram. Soc. Bull. v.66 Materials for IC Packaging with Very Low Permittivity via Colloidal Sol-Gel Processing W.A. Yarbrough;T.R. Gururaja;L.E. Cross