Computation of viscoelastic flow using neural networks and stochastic simulation

  • Tran-Canh, D. (Faculty of Engineering and Surveying, University of Southern Queensland Toowoomba) ;
  • Tran-Cong, T. (Faculty of Engineering and Surveying, University of Southern Queensland)
  • Published : 2002.12.01

Abstract

A new technique for numerical calculation of viscoelastic flow based on the combination of Neural Net-works (NN) and Brownian Dynamics simulation or Stochastic Simulation Technique (SST) is presented in this paper. This method uses a "universal approximator" based on neural network methodology in combination with the kinetic theory of polymeric liquid in which the stress is computed from the molecular configuration rather than from closed form constitutive equations. Thus the new method obviates not only the need for a rheological constitutive equation to describe the fluid (as in the original Calculation Of Non-Newtonian Flows: Finite Elements St Stochastic Simulation Techniques (CONNFFESSIT) idea) but also any kind of finite element-type discretisation of the domain and its boundary for numerical solution of the governing PDE's. As an illustration of the method, the time development of the planar Couette flow is studied for two molecular kinetic models with finite extensibility, namely the Finitely Extensible Nonlinear Elastic (FENE) and FENE-Peterlin (FENE-P) models.P) models.

Keywords

References

  1. IMA J. Numerical Analysis v.17 Fast evaluation of radial basis functions: methods for two-dimensional polyharmonic splines Beatson, R.K.;W.A. Light https://doi.org/10.1093/imanum/17.3.343
  2. Comput. Methods Appl. Mech. Engrg. v.139 Meshless methods: An overview and recent developments Belytschko, T.;Y. Krongauz;D. Organ;M. Fleming;P. Krysl https://doi.org/10.1016/S0045-7825(96)01078-X
  3. Dynamics of polymeric liquids v.2 Bird, R.B.;C.F. Curtiss;R.C. Armstrong;O. Hassager
  4. J. Non-Newt. Fluid Mech. v.84 Variance reduction methods for CONNFFESSIT-like simulations Bovin, J.;M. Picasso https://doi.org/10.1016/S0377-0257(98)00179-7
  5. Computers Math. Applic. v.21 no.9 The parameter R^2 in multiquadric interpolation Carlson, R.E.;T.A. Foley https://doi.org/10.1016/0898-1221(91)90123-L
  6. Applied numerical methods Carnahan, B.;H.A. Luther;J.O. Wilkes
  7. J. Non-Newt. Fluid Mech. v.17 Some experimental results on the developement of Couette flow for Non-Newtonian fluids Chow, A.W.;C.G. Fuller https://doi.org/10.1016/0377-0257(85)80011-2
  8. Numerical methods for chemical engineers with matlab application Constantinides, A.;N. Mostoufi
  9. Neural, Parallel & Scientific Computations v.2 Approximation of dynamical systems by continuous-time recurrent approximate identity neural networks Conti, M.;C. Turchetti
  10. RAIRO Analyse Numeriques v.10 Interpolation des fonctions de deux variables suivant le principle de la flexion des plaques minces Duchon, J.
  11. J. Non-Newt. Fluid Mech. v.17 Viscosity, first normal-stress coefficient, and molecular stretching in dilute polymer solutions Fan, X.J. https://doi.org/10.1016/0377-0257(85)80011-2
  12. Macromolecules v.28 CONNFFESSIT Approach for solving a two-dimensional viscoelastic fluid problem Feigl, K.;M. Laso;H.C. Ottinger https://doi.org/10.1021/ma00113a031
  13. J. Chem. Phys. v.69 no.4 Simulation of polymer dynamics. Ⅰ. General theory Fixman, M. https://doi.org/10.1063/1.436725
  14. J. Chem. Phys. v.69 no.4 Simulation of polymer dynamics. Ⅱ. Relaxation rates and dynamic viscosity Fixman, M. https://doi.org/10.1063/1.436726
  15. Math. Comput. v.48 Scattered data interpolation: test of some methods Franke, R.
  16. Handbook of stochastic methods for physics, chemistry and the natural sciences Gardiner, C.W.
  17. The theory of stochastic processes Ⅲ Gihman, I.I.;A.V. Skorohod
  18. J. Geophys. Res. v.176 Multiquadric equations for topography and other irregular surfaces Hardy, R.L.
  19. Neural networks: A comprehensive foundation Haykin, S.
  20. Neural Networks v.13 Multilayer neural networks for solving a class of partial differential equations He, S.;K. Reif;R. Unbehauen https://doi.org/10.1016/S0893-6080(00)00013-7
  21. J. Non-Newt. Fluid Mech. v.68 A Detailed comparison of various FENE dumbbell models Herrchen, M.;H.C. Ottinger https://doi.org/10.1016/S0377-0257(96)01498-X
  22. J. Non-Newt. Fluid Mech. v.70 Simulation of viscoelastic flows using Brownian Configuration fields Hulsen, M.A.;A.P.G. van Heel;B.H.A.A. van den Brule https://doi.org/10.1016/S0377-0257(96)01503-0
  23. Computers Math. Applic. v.19 no.8-9 Multiquadrics-A scattered data approximation scheme with applications to computational fluid dynamics-Ⅱ: Solutions to Parabolic, Hyperbolic and Elliptic Partial Differential Equations Kansa, E.J. https://doi.org/10.1016/0898-1221(90)90271-K
  24. J. Non-Newt. Fluid Mech. v.68 On the Peterlin approximation for finitely extensible dumbbells Keunings, R. https://doi.org/10.1016/S0377-0257(96)01497-8
  25. Numerical solution of SDE through computer experiments Kloeden, P.E.;E. Platen;H. Schurz
  26. Numerical solution of Stochastic Differential Equations Kloeden, P.E.;E. Platen
  27. J. Non-Newt. Fluid Mech. v.47 Calculation of viscoelastic flow using molecular models: the CONNFFESSIT approach Laso, M.;H.C. Ottinger https://doi.org/10.1016/0377-0257(93)80042-A
  28. AIChE Journal v.43 no.4 2-D Time-dependent viscoelastic flow calculations using CONNFFESSIT Laso, M.;M. Picasso;H.C. Ottinger https://doi.org/10.1002/aic.690430404
  29. flexible polymer chains dynamics in elongational flow: theory and experiment Calculation of flows with large elongation components: CONNFFESSIT calculation of the flow of a FENE fluid in a planar 10:1 contraction Laso, M.;M. Picasso;H.C. Ottinger;Nguyen, T.Q.(ed.);Kausch, H.H.(ed.)
  30. Neural Networks v.14 Numerical solution of Navier-Stokes equations using multiquadric radial basis function networks Mai-Duy, N.;T. Tran-Cong https://doi.org/10.1016/S0893-6080(00)00095-2
  31. J. Non-Newt. Fluid Mech. v.12 Unsteady-state development of plane Couette flow for viscoelastic fluids Mochimaru, Y. https://doi.org/10.1016/0377-0257(83)80034-2
  32. Int. J. Numer. Meth. Engng. v.39 A finit point method in computational mechanics. Applications to convective transport and fluid flow Onate, E.;S. Idelsohn;O.C. Zienkiewicz;L. Taylor https://doi.org/10.1002/(SICI)1097-0207(19961130)39:22<3839::AID-NME27>3.0.CO;2-R
  33. Matlab routines for subset selection and ridge regression in Linear Network Orr, M.J.L.
  34. Regularisation in the selection of radial basis function centres Orr, M.J.L.
  35. Stochastic processes in polymeric fluids: tools and examples for developing simulation algorithms Ottinger, H.C.
  36. Neural Computation v.3 Universal approximation using radial basis function networks Park, J.;I.W. Sandberg https://doi.org/10.1162/neco.1991.3.2.246
  37. Numerical solution partial differential equations: Finite Difference Methods Smith, G.D.
  38. Eng. Anal. With Boundary Elements v.26 BEM-NN computation of Generalised Newtonian Flows Tran-Canh, D.;T. Tran-Cong https://doi.org/10.1016/S0955-7997(01)00085-6
  39. Int. J. Numer. Meth. Engng. v.42 A numerical method for heat transfer problems using collocation and radial basis functions Zerroukat, M.;H. Power;C.S. Chen https://doi.org/10.1002/(SICI)1097-0207(19980815)42:7<1263::AID-NME431>3.0.CO;2-I
  40. J. Non-Newt. Fluid Mech. v.70 Brownian configuration fields and variance reduced CONNFFESSIT Ottinger, H.C.;B.H.A.A. van den Brule;M.A. Hulsen https://doi.org/10.1016/S0377-0257(96)01547-9