Fiber orientation in the processing of polymer composites

  • Chung, Du-Hwan (Department of Mechanical and Industrial Engineering, Pohang University of Science and Technology) ;
  • Kwon, Tai-Hun (Department of Mechanical and Industrial Engineering, Pohang University of Science and Technology)
  • 발행 : 2002.12.01

초록

We review the modeling and simulation of fiber orientation during injection molding processes of short fiber reinforced thermoplastics. Generally, a group of fibers are described in terms of probability distribution function or orientation tensor. Various closure approximation models to express higher order tensor in terms of Bower order tensors are reviewed. Rheology of fiber suspensions, multiple fiber-fiber interaction and numerical technique for the prediction of fiber orientation are also considered for concentrated situations.

키워드

참고문헌

  1. J. Rheol. v.31 The use of tensors to describe and predict fiber orientation in short fiber composites Advani S.G.;C.L. Tucker Ⅲ https://doi.org/10.1122/1.549945
  2. J. Rheol. v.34 no.3 closure approximations for three-dimensional structure tensors Advani S.G.;C.L. Tucker Ⅲ https://doi.org/10.1122/1.550133
  3. J. Fluid Mech. v.46 The stress generated in a non-dilute suspension of elongated particles by pure straining motion Batchelor G.K. https://doi.org/10.1017/S0022112071000879
  4. Fiber orientation in injection molded composites : A comparison of theory and experiment Ph.D thesis, University of Illinois at Urbana-Champaign Bay R.S.
  5. Polym.Compos. v.13 no.4 Fiber orientation in simple injection moldings. Part Ⅰ: Theory and numerical methods Bay R.S.;C.L. Tucker Ⅲ https://doi.org/10.1002/pc.750130409
  6. Polym.Compos. v.13 no.4 Fiber orientation in simple injection moldings. Part Ⅱ: Experimental results Bay R.S.;C.L. Tucker Ⅲ https://doi.org/10.1002/pc.750130410
  7. Comp. Meth. Appl. Mech. Eng. v.32 Streamline Upwind/Petrov-Galerkin Formulations for Convection Dominated Flows with Particular Emphasis on the Incompressible Navier-Stokes Equations Brooks, A.N.;T.J.R. Hughes https://doi.org/10.1016/0045-7825(82)90071-8
  8. PPS15 Proceedings, Paper 180 Improved Orthotropic Closure Approximation for Fiber Orientation Tensorial Description Chung D.H.;T.H. Kwon;P.G.M. Kruijt(ed.);H.E.H. Meijer(ed.);F.N. van de Vosse(ed.)
  9. Korea-Australia Rheology Journal v.12 no.2 Applications of Recently Proposed Closure Approximations to Injection Molding Filling Simulation of Short-fiber Reinforced Plastics Chung D.H.;T.H. Kwon
  10. Polym. Compos. v.22 no.5 Improved Model of Orthotropic Closure Approximation for Flow Induced Fiber Orientation Chung D.H.;T.H. Kwon https://doi.org/10.1002/pc.10566
  11. J. Rheol. v.46 no.1 Invariant-based optimal fitting closure approximation for the numerical prediction of flow-induced fiber orientation Chung D.H.;T.H. Kwon https://doi.org/10.1122/1.1423312
  12. J. Non-Newtonian Fluid Mech. v.107 Numerical Studies of Fiber Suspensions in an Axisymmetric Radial Diverging Flow: The Effects of Modeling and Numerical Assumptions Chung D.H.;T.H. Kwon https://doi.org/10.1016/S0377-0257(02)00142-8
  13. Polym. Eng.Sci. v.35 Numerical Simulation of Fiber Orientation in Injection Molding of Short-Fiber-Reinforced Thermoplastics Chung S.T.;T.H. Kwon https://doi.org/10.1002/pen.760350707
  14. Polym. Compos. v.17 Coupled Analysis of Injection Molding Filling and Fiber Orientation Including In-Plane Velocity Gradient Effect Chung S.T.;T.H. Kwon https://doi.org/10.1002/pc.10679
  15. J. Rheol. v.39 Orthotropic Closure Approximations for Flow-Induced Fiber Orientation Cintra J.S.;C.L. Tucker Ⅲ https://doi.org/10.1122/1.550630
  16. J. Rheol. v.28 no.3 A Rheological Equation of State for Semiconcentrated Fiber Suspensions Dinh S.M.;R.C. Armstrong https://doi.org/10.1122/1.549748
  17. Advances in the Flow and Rheology of Non-Newtonian Fluids Modelling the flow of fiber suspensions in narrow gaps Dupret F.;V. Verleye;D.A. Siginer;D.De Kee(ed.);R.P.Chhabra(ed.)
  18. J.Non-Newtonian Fluid Mech. v.74 A Direct Numerical Simulation of Fibre Suspensions Fan X.J.;N. Phan-Thien;R. Zheng https://doi.org/10.1016/S0377-0257(97)00050-5
  19. J. Reinf. Plast. Compos. v.3 Orientation Behavior of Fibers in Concentrated Suspensions Folgar F.;C.L. Tucker Ⅲ https://doi.org/10.1177/073168448400300201
  20. Polym. Compo. v.14 Fiber orientation and mechanical properties of short-fiber-reinforced injection-molded composites: Simulated and experimental results Gupta, M.;K.K.Wang https://doi.org/10.1002/pc.750140503
  21. Int. J. Numer. Meth.Fluids v.28 Simulation of Three-Dimensional Polymer Mould Filling Processes Using a Pseudo-Concentration Method Haagh, G. A.A.V.;F.N.V.D. Vosse https://doi.org/10.1002/(SICI)1097-0363(19981215)28:9<1355::AID-FLD770>3.0.CO;2-C
  22. Polym. Eng. Sci. v.16 The Halpin-Tsai Equations: A Review Halpin J.C.;J.L. Kardos https://doi.org/10.1002/pen.760160512
  23. J. Rheol. v.43 no.3 Modified hybrid closure approximation for prediction of flow-induced fiber orientation Han, K.H.;Y.T. Im https://doi.org/10.1122/1.551002
  24. Enhancement of Accuracy in Calculating Fiber Orientation Distribution in Short Fiber Reinforced Injection Molding, Department of Mechanical Engineering Ph.D thesis, Korea Advanced Institute of Science and Technology Han, K.H.
  25. J. Non-Newtonian Fluid Mech. v.7 A finite-element/finite-difference simulation of the injection-molding filling process Hieber C.A.;S.F. Shen https://doi.org/10.1016/0377-0257(80)85012-9
  26. J. Fluid Mech. v.52 The effect of Brownian motion on the rheological properties of a suspension of non-spherical particles Hinch E.J.;L.G. Leal https://doi.org/10.1017/S002211207200271X
  27. Proc. R.Soc. v.A102 The Motion of Ellipsoidal Particles Immersed in a Viscous Fluid Jeffery G.B.
  28. Rheol. Acta v.20 An empirical equation of the relative viscosity of polymer melts filled with various inorganic fillers Kitano T.;T. Kataoka;T. Shirota https://doi.org/10.1007/BF01513064
  29. Phys. Fluids v.7 A model for orientational diffusion in fiber suspensions Koch D.L. https://doi.org/10.1063/1.868455
  30. J.Fluid Mech. v.329 A Numerical Study of the Rheological Properties of Suspensions of Rigid, non-Brownian Fibres Mackaplow M.B.;E.S.G. Shaqfeh https://doi.org/10.1017/S0022112096008889
  31. J. Fluid Mech. v.202 The viscosity-volume fraction relation for suspensions of rod-like particles by falling-ball rheometry Milliken W.J.;M. Gottlieb;A.L. Graham;L.A. Mondy;R.L. Powell https://doi.org/10.1017/S0022112089001163
  32. Rheol. Acta v.30 A new constitutive model for fibre suspensions : flow past a sphere Phan-Thien N.;A.L. Graham https://doi.org/10.1007/BF00366793
  33. Rheol. Acta v.39 A numerical simulation of suspension flow using a constitutive model based on anisotropic interparticle interactions Phan-Thien N.;X.J. Fan;R. Zheng https://doi.org/10.1007/s003970050012
  34. J.Rheol. v.35 no.8 Fiber-fiber interactions in homogeneous flows of nondilute suspensions Ranganathan S.;S.G. Advani https://doi.org/10.1122/1.550244
  35. J. non-Newtonian Fluid Mech. v.47 A simultaneous solution for flow and fiber orientation in axisymmetric diverging radial flow Ranganathan S.;S.G. Advani https://doi.org/10.1016/0377-0257(93)80047-F
  36. Interactions and orientation in concentrated suspensions of rigid rods: Theory and experiment Ph.D thesis, University of Illinois at Urbana-Champaign Sandstrom C.R.
  37. Phys.Fluids v.A2 no.1 The Hydrodynamic Stress in a Suspension of Rods Shaqfeh E.S.G.;G.H. Fredrickson
  38. J.Non-Newtonian Fluid Mech. v.73 Structure and Properties of Sheared Fiber Suspensions with Mechanical Contacts Sundararajakumar R.R.;D.L. Koch https://doi.org/10.1016/S0377-0257(97)00043-8
  39. Int. J. Numer. Meth. Fluids v.6 Use of Pseudo-Concentrations to Follow Creeping Viscous Flows during Transient Analysis Thompson, E. https://doi.org/10.1002/fld.1650061005
  40. Modeling Flow-Induced Microstructure of Inhomogeneous Liquid-Liquid Mixtures Ph.D thesis, University of Illinois at Urbana-Champaign Wetzel E.D.
  41. Proc. of the ASME Winter Annual Mtg. MD-Vol49. HTD-Vol283 Numerical Prediction of Fiber Orientation in Complex Injection Molded Parts Verleye, V.;F. Dupret
  42. Int. Polym. Process. v.12 no.3 The optimized quasi-planar approximation for predicting fiber orientation in injection-molded composites Verweyst, B.E.;C.L. Tucker Ⅲ;P.H. Foss https://doi.org/10.3139/217.970238
  43. Numerical Predictions of Flow-Induced Fiber Orientation in Three-Dimensional Geometries Ph.D thesis, University of Illinois at Urbana-Champaign Verweyst B.E.
  44. J. Chem. Phys. v.98 no.1 A Method for Dynamic Simulation of Rigid and Flexible Fibers in a Flow Field Yamamoto S.;T. Matsuoka https://doi.org/10.1063/1.464607
  45. J. Non-Newtonian Fluid Mech. v.54 Numerical Simulation of Semi-dilute Suspensions of Rodlike Particles in Shear Flow Yamane Y.;Y. Kaneda Y.;M. Doi https://doi.org/10.1016/0377-0257(94)80033-2