DOI QR코드

DOI QR Code

ITS 부위에 근거한 한국산 Alexandrium tamarense 5 클론의 계통분류학적 위치

Phylogenetic position of five Korean strains of Alexandrium tamarense(Dinophyceae), based on internal transcribed spacers ITS1 and ITS2 including nuclear-encoded 5.85 rRNA gene sequences

  • 조은섭 (국립수산진흥원 적조생물과) ;
  • 이삼근 (국립수산진흥원 적조생물과) ;
  • 김익수 (농업과학기술원 잠사곤충부)
  • Cho, Eun-Seob (Harmful Algal Research Division, National Fisheries Research and Development Institute) ;
  • Lee, Sam-Geun (Harmful Algal Research Division, National Fisheries Research and Development Institute) ;
  • Kim, Ik-Soo (Department of Sericulture and Entomology, National Institute of Agricultural Science and Technology)
  • 발행 : 2002.12.01

초록

알렉산드륨 적조생물의 리보소옴 알엔에이 유전자의 ITS1, 2 및 5.8S부위를 대상으로 종간 혹은 종내의 유전적 다양도를 조사하기 위하여 지리적으로 격리된 33 스트레인 유전자의 염기서열를 비교했다. 진해만에서 분리된 AT-2, AT-6, AT-10, AT-A, AT-B 5클론은 일본종 OFX151-A과 동일한 유전자임을 발견했다. ITS부위에서 가장 짧은 종은 A. margalefi로 481 bp이며 가장 긴 종은 A. affine으로 528 bp로 나타났다. ITS1과 ITS2 염기서열에 대한 상호관계는 역으로 나타낸 반면에, G+C 함량에 대한 상호관계는 플러스로 나타났다. 유전적 변이율은 0.3% (1 bp)에서 53% (305 bp)였다. A. tamarense과 가장 적게 유전적 변이율을 보인 종은 A. fundyense(1.2-2.3% = 6-12 bp)인 반면에, A. catenella와는 큰 변이율 (19.8% = 102 bp)을 보였고, A. catenella와 A. fundyense은 19.7% 상이하였다. 알렉산드륨 적조생물의 bootstrap은 약하게 지지되는 데도 불구하고, A. catenella 분리종은 독립적인 그룹으로 형성하여 상호간에는 강력한 bootstrap 값은 PAUP과 NJ 분석에서 보였다. A. cohorticula와 A. frateculus 적조생물은 항상 sub-group 내에서 높은 bootstrap을 가졌다. 결론적으로 ITS부위의 염기서열 분석은 알렉산드륨 적조생물의 집단내 혹은 집단간의 계통분류을 밝히는데 유용한 것으로 보였다.

In order to measure the inter- and intraspecific genetic divergences within the genus Alexandrium, the variations within the internal transcribed spacer (ITS1 and ITS2) regions and 5.85 ribosomal RNA gene of eight Alexandrium species were examined for 33 strains from diverse geographical locations by direct sequencing. Five isolates of A. tamarense (AT-2, AT-6, AT-10, AT-A and AT-B) from Jinhae Bay, Korea were found to be completely identical to a Japanese strain OFX151-A. The length of the amplified ITSI-5.85-ITS2 region varied from 481 nucleotides (in A. margalefi) to 528 nucleotides (in A. affine CU1-1). ITS1 and ITS2 nucleotide lengths were negatively correlated, whereas a positive correlation was found between their G+C content. The degree of sequence divergence ranged from 0.3% (1 bp) to a maximum of 53% (305 Up). Pairwise sequence comparisons revealed a small degree of divergence between A. tamarense and A. Pundyense isolates (1.2 - 2.3% = 6-12 bp), but a high degree of divergence between A. tamarense and A. catenella (19.8% = 102 bp), and between A. catenella and A. Pundyense (19.7%). Although most nodes were weakly supported by bootstrap values, some types tend to form independent molecular groups. A. catenella isolates also formed an independent molecular sub-group, with relaticula strong bootstrap values (94% or 85% and 79% or 98%, respectively in PAUP and NJ trees). Interestingly, A. cohorticula and A. frateculus always clustered within the same sub-group, this result being supported by strong bootstrap values. Our results indicate that the ITS regions provide useful informations on hierarchical population genetic structure and a high phylogenetic resolution in intraspecific and interspecific Alexandrium population.

키워드

참고문헌

  1. J. Phycol. v.30 Restriction fragment length polymorphism of ribosomal DNA internal transcribed spacer and 5.8S regions in Japanese Alexandrium species (Dinophyceae) Adachi, M.;Y. Sako;Y. Ishida https://doi.org/10.1111/j.0022-3646.1994.00857.x
  2. J. Phycol. v.32 Analysis of Alexandrium (Dinophyceae) species using sequences of the 5.8S ribosomal DNA and internal transcribed spacer regions Adachi, M.;Y. Sako;Y. Ishida https://doi.org/10.1111/j.0022-3646.1996.00424.x
  3. Fish. Sci. v.63 Analysis of Gymnodinium catenatum (Dinophyceae) using sequences of the 5.8S rDNA-ITS regions and random amplified polymorphic DNA Adachi, M.;Y. Sako;Y. Ishida https://doi.org/10.2331/suisan.63.701
  4. J. Exp. Mar. Biol. Ecol. v.86 Time-course measurements of phosphorus depletion and cyst formation in the dinoflagellate Gonyaulax tamarensis Anderson, D. M.;N. L. Lindquist https://doi.org/10.1016/0022-0981(85)90039-5
  5. Mar. Bio. v.76 Importance of life cycle events in the population dynamics of Gonyaulax tamarensis Anderson, D. M.;S. W. Chisholm;C. J. Watras https://doi.org/10.1007/BF00392734
  6. J. Phycol. v.20 Sexuality and cyst formation in the dinoflagellate Gonyaulax tamarensis: cyst yield in batch cultures Anderson, D. M.;D. M. Kulis;B. J. Binder https://doi.org/10.1111/j.0022-3646.1984.00418.x
  7. Toxic Dinoflagellates The genus Alexandrium or Gonyaulax of the tamarense group. Balech, E.;Anderson, D. M.(ed.);A. W. White(ed.);D. G. Baden D.G.(ed.)
  8. Science v.228 The mosaic genome of warm-blooded vertebrates Bernardi, G.;B. Olofsson;J. Filipsik;M. Zerial;J. Salinas;G. Cuny;M. Meunier;F. Rodier https://doi.org/10.1126/science.4001930
  9. Toxicon v.35 Toxin producton of Alexandrium minutum (Dinophyceae) from the Bay of plenty, New Zealand Chang, F. H.;D. M. Anderson;D. M. Kulis;D. G. Till https://doi.org/10.1016/S0041-0101(96)00168-7
  10. Phycologia v.40 Thecal plates, toxin content and growth of five clones of Alexandrium tamarense (Dinophyceae) isolated from the Jinhae Bay, Korea Cho, E. S.;H. J. Lee https://doi.org/10.2216/i0031-8884-40-5-435.1
  11. Algae v.16 Molecular analysis of morphologically similar dinoflagellates Cochlodinium polykrikoides, Gyrodinium impudicum and Gymnodinium catenatum based internal transcribed spacer and 5.8S rDNA regions Cho, E. S.;G. Y. Kim;Y. C. Cho
  12. Kor. J. Lif. Sci. v.11 Phylogenetic relationship among several Korean coastal red tide dinoflagellates based on their rDNA internal transcribed spacer sequences Cho, E. S.;G. Y. Kim;H. S. Park;B. H. Nam;J. D. Lee
  13. J. Kor. Soc. Oceano. v.35 Sequence analysis of Cochlodinium polykrikoides isolated from Korean coastal waters using sequences of Internal Transcribed Spacers and 5.8S rDNA Cho, E. S.;H. G. Kim;Y. C. Cho
  14. PHYLIP (Phylogeny Inference Package) (Version 3.5c) Felsenstein, J.
  15. Bull. Mar. Sci. v.37 Morphology of Protogonyaulax tamarensis (Lebour) Taylor and Protogonyaulax catenella (Whedon and Kofoid) Taylor from Japanese coastal waters Fukuyo, Y.
  16. Nucelic Acids Res. v.11 The external transcribed spacer and preceding region of Xenopus borealis rDNA: comparison with the corresponding region of Xenopus laevis rDNA Furlong, J. C.;J. Forbes;M. Robertson;B. E. H. Madden https://doi.org/10.1093/nar/11.23.8183
  17. Can. J. Micro. v.8 Studies of marine planktonic diatoms 1. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran Guillard, R. R. L.;J. H. Ryther https://doi.org/10.1139/m62-029
  18. Phycologia v.32 A review of harmful algal blooms and their apparent global increase Hallegraeff, G. M. https://doi.org/10.2216/i0031-8884-32-2-79.1
  19. Rev. Biol. v.66 Ribosomal DNA: molecular evolution and phylogenetic inference Hillis, D. M.;M. T. Dixon https://doi.org/10.1086/417338
  20. Nip. Sui. Gakk. v.59 Variation of toxin production and composition in axenic cultures of Alexandrium catenella and A. tamarense Kim, C. H.;Y. Sako;Y. Ishida https://doi.org/10.2331/suisan.59.633
  21. Harmful algal blooms in Korea and China Development of PSP toxigenic dinoflagellates and toxin production in Korean coastal waters Kim C.H.;Kim, H. G.(ed.);S. G. Lee(ed.);C. K. Lee(ed.)
  22. J. Fish. Sci. Tech. v.2 Molecular identification of Gyrodinium impudicum and Gymnodinium sanguineum by comparing the sequences of the internal transcribed spacers 1,2 and 5.8S ribosomal DNA. Kim, G. Y.;M. G. Ha;E. S. Cho;T. H. Lee;S. J. Lee;J. D. Lee
  23. J. Mol. Evol. v.116 A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences Kimura, M.
  24. Micro. Rev. v.58 Bacterial gene transfer by natural genetic transformation in the environment Lorenz, M. G.;W. Wackernagel
  25. Phycologia v.35 The resting cyst and toxicity of Alexandrium ostenfeldii (Dinophyceae) in New Zealand Mackenzie, L.;D. White;Y. Oshima;J. KAPA https://doi.org/10.2216/i0031-8884-35-2-148.1
  26. Toxic Marine Phytoplankton Isozyme and cross analysis of mating populations in the Alexandrium catenella/tamarense species complex. Sako, Y.;C. H. Kim;H. Ninomiya;M. Adachi;Y. Ishida;Graneli, E.(ed.);B. Sundstrom(ed.);I. Edler(ed.);D. M. Anderson(ed.)
  27. Nucleic Acids Res. v.16 Compositional compartmentalization and compositional patterns in the nuclear genomes of plants Salinas, J.;G. Matassi;L. M. Montero;G. Bernardi https://doi.org/10.1093/nar/16.10.4269
  28. J. Phycol. v.30 Identification of group- and strain-specific genetic markers for globally distributed Alexandrium (Dinophyceae)Ⅰ. RELP analysis of SSU rRNA genes Scholin, C.A.;D. M. Anderson https://doi.org/10.1111/j.0022-3646.1994.00744.x
  29. J. Phycol. v.29 Two distinct small-subunit ribosomal RNA genes in the North American toxic dinoflagellate Alexandrium fundyense (Dinophyceae) Scholin, C. A.;D. M. Anderson;M. L. Sogin https://doi.org/10.1111/j.0022-3646.1993.00309.x
  30. J. World Aquacult. Soc. v.21 A review of the effects of algal blooms on shellfish and aquaculture Shumway, S. E. https://doi.org/10.1111/j.1749-7345.1990.tb00529.x
  31. Toxic Marine Phytoplankton The taxonomy of Gonyaulax, Pyrodinium, Alexandrium, Gessnerium, Protogonyaulax and Goniodoma Stediner, K. A.;O. Moestrup;Graneli, E.(ed.);B. Sundstrom(ed.);L. Edler(ed.);D. M. Anderson(ed.)
  32. PAUP(version 3.1, beta 8) Swoford D.L.
  33. Mycoscience v.39 Phylogenetic analysis and predicted secondary structures of the rDNA internal transcribed spacers of the powdery mildew fungi (Erysiphaceae) Takamatsu, S.;T. Hirata;Y. Sato https://doi.org/10.1007/BF02460905
  34. Seafood Toxins, ACS Symposium Series 262 Toxic dinoflagellates: taxonomic and biogeographic aspects with emphasis on Protogonyaulax Taylor, F. J. R.;Ragelis, E. P.(ed.)
  35. J. Mol. Evol. v.30 GC balance in the internal transcribed spacers ITS1 and ITS2 of nuclear ribosomal RNA genes Torres, R. A.;M. Ganal;V. Hemleben