Low-Dose Gamma Irradiation as Means of Isolating Carotenoid-Hyperproducing Yeast Mutant

  • Sun, Nam-Kyu (Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Lee, Seung-Hee (Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Ahn, Gil-Hwan (Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Won, Mi-Sun (Korea Research Institute of Bioscience and Biotechnology) ;
  • Song, Kyung-Bin (Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University)
  • Published : 2002.12.01


In order to isolate carotenoid-hyperproducing yeast, low-dose gamma irradiation was used as means of mutagenesis. Phaffia rhodozyma was treated by gamma irradiation of less than 10 kGy, which is considered to be a wholesome irradiation condition established by the Food and Drug Administration. Through repeated rounds of gamma irradiation and visual screening, mutant 3A4-8 was obtained. It produced a $3,824{\mu}g$ carotenoid/g yeast, 69% higher content than $2,265{\mu}g/g$ yeast of the unirradiated one. This result indicates that low-dose gamma irradiation could be used as means of mutagenesis to obtain carotenoid-hyperproducing strain of Phaffia rhodozyma, since only carotenoid-hyperproducing yeast survived gamma irradiation by scavenging oxygen radicals generated by radiolysis of water.


  1. Appl. Biochem. Biotechnol. v.66 photosensitization of the yeast Phaffia rhodozyma at a low temperature for screening carotenoid hyperproducing mutants An,G.H. https://doi.org/10.1007/BF02785592
  2. Biol/ Technology v.9 Isolation and characterization of carotenoid hyperproducing mutants of yeast by flow cytometry and cell sorting An,G.H.;J.Auerbach;R.Auerbach;E.A.Johnson https://doi.org/10.1038/nbt0191-70
  3. J. Biosci. Bioeng. v.92 Cultivation of the carotenoid-hyperproducing mutant 2A2N of the red yeast Xanthophyllomyces dendrorhous (Phaffia rhodozyma) with molasses An,G.H.;B.G.Jang;M.H.Cho https://doi.org/10.1263/jbb.92.121
  4. Appl. Environ. Microbiol. v.55 Islation of Phaffia rhodozyma mutants with increased astaxanthin content An,G.H.;D.B.Schuman;E.A.Johnson
  5. J. Microbiol. Biotechnol. v.11 Physiological response of oxygen-tolerant anaerobic Bifidobacterium longum under oxygen Ahn,J.B.;H.J.Hwang;J.H.Park
  6. Biotechnol. Lett. v.19 Isolation of astaxanthin-overproducing mutants of Phaffia rhodozyma Bon,J.A.;T.D.Leathers;R.K.Jayaswal https://doi.org/10.1023/A:1018391726206
  7. Biotechnol. Lett. v.21 Growth and carotenoid production by pH-stat cultures of Phaffia rhodozyma Chan,H.Y.;K.P.Ho https://doi.org/10.1023/A:1005638610564
  8. Food Res. Int. v.32 Effect of ascorbic acid and protein concentration on the molecular weight profile of BSA and β-lactoglobulin by γirradiation Cho,Y.;J.Yang;K.B.Song https://doi.org/10.1016/S0963-9969(99)00127-1
  9. J. Ferment. Bioeng. v.75 Improvement of astaxanthin production by Phaffia rhodozyma through mutation and optimization of culture conditions Fang,T.J.;Y.S.Cheng https://doi.org/10.1016/0922-338X(93)90099-T
  10. Appl. Environ. Microbiol. v.56 Selection of astaxanthin-overproducing mutants of Phaffia rhodozyma with β-ionone Lewis.M.J.;M.C.Berlant;M.Miranda
  11. J. Microbiol. Biotechnol. v.10 Effect of nutrient levels on cell growth and secondary carotenoids formation in the freshwater green alga Chlorococcum sp. Liu,B.H.;D.H.Zhang;Y.K.Lee
  12. Food Chem. v.74 Effect of γ-irradiation on the molecular properties of ovalbumin and ovomucoid and protection by ascorbic acid Moon,S.;K.B.Song https://doi.org/10.1016/S0308-8146(01)00102-9
  13. FEMS Microbiol. Lett. v.152 Radiation-induced chromosomal rearrangement as an aid to analysis of the genetic eonstitution of Phaffia rhodozyma Nagy,A.;Z.Palagyi;L.Ferenczy;C.Vagvolgyi https://doi.org/10.1111/j.1574-6968.1997.tb10435.x
  14. World J. Microbiol. Biotechnol. v.17 Carbonsource assimilation pattern of the astaxanthin-producing yeast Phaffia fhodozyma Palagyi,Z.;L.Ferenczy;C.Vagvolgyi https://doi.org/10.1023/A:1016689512718
  15. Biotechnol. Techniques v.9 A new mutation protocol for obtaining auxotrophic mutants of the yeast Phaffia rhodozyma Palagyi,Z.;A.Nagy;C.Vagvolgyi;L.Ferenzy https://doi.org/10.1007/BF00160825
  16. J. Microbiol. Biotechnol. v.11 Astaxanthin production by Haematotoccus pluvialis under light intensities and wavelengths Park,E.K.;C.G.Lee
  17. Int. J. Radiat. Biol. v.64 Oxygen effect in the radiolysis of proteins Puchala,M.;H.Schessler https://doi.org/10.1080/09553009314551231
  18. Microbiol. v.142 Selection for carotenogenesis in the yeast Phaffia rhodozyma by dark-generated singlet oxygen Schroeder,W.A.;P.Calo.M.L.DeClercq;E.A.Johnson https://doi.org/10.1099/13500872-142-10-2923
  19. J. Gen. Microbiol. v.139 Antioxidant role of carotenoids in Phaffia rhodozyma Schroeder,W.A.;E.A.Johnson https://doi.org/10.1099/00221287-139-5-907
  20. J. Biol. Chem. v.270 Singlet oxygen and peroxyl regulate carotenoid biosynthesis in Phaffia rhodozyma Schroeder,W.A.;E.A.Johnson https://doi.org/10.1074/jbc.270.31.18374
  21. Int. J. Radiat. Biol. v.45 Oxygen effect in the radiolysis of proteins Schuessler,H.;K.Schilling https://doi.org/10.1080/09553008414550381