Free Vibration Analysis of Thick Circular Ring from Three-Dimensional Analysis

두꺼운 원형링의 3차원적 자유진동해석

  • 양근혁 (중앙대학교(서울캠퍼스) 공과대학 건축학부 건축공학과) ;
  • 강재훈 (중앙대학교(서울캠퍼스) 공과대학 건축학부 건축공학과) ;
  • 채영호 (중앙대학교(서울캠퍼스) 첨단영상대학원 영상공학과)
  • Published : 2002.12.01

Abstract

A three-dimensional(3-D) method of analysis is presented for determining the free vibration frequencies and mode shapes of thick, circular rings with isosceles trapezoidal and triangular cross-sections. Displacement components u/sub s/, u/sub z/, and u/sub θin the meridional, normal, and circumferential directions, respectively, are taken to be sinusoidal in time, periodic in θ, and algebraic polynomials in the ψ and z directions. Potential(strain) and kinetic energies of the circular ring are formulated, and upper bound values of the frequencies we obtained by minimizing the frequencies. As the degree of the polynomials is increased, frequencies converge to the exact values. Novel numerical results are presented for the circular rings with isosceles trapezoidal and equilateral triangular cross-sections having completely free boundaries. Convergence to four-digit exactitude is demonstrated for the first five frequencies of the rings. The method is applicable to thin rings, as well as thick and very thick ones.

본 연구에서는 이등변사다리꼴과 이등변삼각형 단면을 갖는 두꺼운 원형링의 고유진동수와 모우드형태를 결정하는 3차원 해석방법을 제시하였다. 자오선(s), 수직(z) 및 원주방향(θ)으로의 변위성분(u/sub s/, u/sub z/, u/sub θ/)을 시간에 대해서는 정현적으로, θ방향으로는 주기성을 갖도록, s와 z방향으로는 대수다항식의 형태로 표현하였다. 원형링의 위치(변형률)에너지와 운동에너지가 공식화되었으며, 진동수의 최소화를 통하여 상위경계치의 진동수를 계산하였다. 다항식의 차수를 증가시키면 진동수는 엄밀해에 수렴하게 된다. 완전자유경계의 원형링에 대한 3차원적 진동수를 최초로 구하였으며 원형링의 하위 5개 진동수에 대해서 유효숫자 4자리까지의 수렴성연구가 이루어졌다. 본 방법은 링 두께의 크기에 관계없이 적용이 가능하다.

Keywords

References

  1. Endo, M., 'Flexural Vibrations of a Ring with Arbitrary Cross Section,' Bull, JSME, Vol. 15, 1972, pp.446-454 https://doi.org/10.1299/jsme1958.15.446
  2. Singal, R. K. and Williams, K., 'A Theoretical and Experimental Study of Vibrations of Thick Circular Cylindrical Shells and Rings,' Journal of Vibration, Acoustics, Stress, and Reliability in Design, Vol. 110, 1988, pp.533-537 https://doi.org/10.1115/1.3269562
  3. Leissa, A. W. and So, J., 'Three-Dimensional Vibration of Truncated Hollow Cones,'Journal of Vibration and Control, Vol. 1, 1995, pp.145 -158 https://doi.org/10.1177/107754639500100202
  4. Tsui, Edward Y. W., Stresses in Shells of Revolution, Pacific Coast Publishers, 1968
  5. Kang, J. H., 'Three-Dimensional Vibration Analysis of Thick Shells of Revolution with Arbitrary Curvature and Variable Thickness,'Ph.D. Dissertation, The Ohio State University, 1997, p.212
  6. Kantorovich, L. V. and Krylov, V. I., Approximate Methods in Higher Analysis, Noordhoff, Groninge, 1958
  7. Ritz, W., 'Uber eine neue Methode zur Losung gewisser Variationsproblems der mathematischen Physik,'Journal für die Reine und Angewandte Mathematik, Vol. 135, 1909, pp. 1-61
  8. Abramowitz, M. and Stegun, I.A., Handbook of Mathematical Functions, U. S. Government Printing Office, Washington, DC., 1964
  9. Leissa, A. W. and So, J., 'Comparisons of Vibration Frequencies for Rods and Beams from One-Dimensional and Three-Dimensional Analyses,' Journal of Acoustical Society of America, Vol. 98, No. 4, 1995, pp.2122-2135 https://doi.org/10.1121/1.414331
  10. So, J. and Leissa, A. W., 'Free Vibrations of Thick Hollow Circular Cylinders from Three-Dimensional Analysis,' Journal of Vibration and Acoustics, Vol. 119, 1997, pp. 89 -95 https://doi.org/10.1115/1.2889692