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ABSTRACT

Real-time(RT) object-oriented(O0O) distributed computing is a form of RT distributed computing
realized with a distributed computer system structured in the form of an object network. Several
approached proposed in recent years for extending the conventional object structuring scheme to suit RT
applications, are briefly reviewed. Then the approach named the Real Time Simulation Programing(RTSP)
structuring scheme was formulated with the goal of instigating a quantum productivity jump in the design
of distributed time triggered simulation. The RTSP scheme is intended to facilitate the pursuit of a new
paradigm in designing distributed time triggered simulation which is to realize real-time computing with
a common and general design style that does not alienate the main-stream computing industry and yet tc
allow system engineers to confidently produce certifiable distributed time triggered simulation for
safety-critical applications. The RTSP structuring scheme is a syntactically simple but semantically
powerful extension of the conventional object structuring approached and as such, its support tools can be
based on various well-established OO programming languages such as C++ and on ubiquitous commercial
RT operating system kernels. The Scheme enables a great reduction of the designers efforts in
guaranteeing timely service capabilities of application systems.
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I . Introduction

One of the computer application fields which
started showing noticeable new growth trends in
recent years is the real-time(RT) computing
application field.

Future RT computing must be realized in the
form of a generalization of the non-RT computing,
rater than in a form looking like an esoteric
specialization.

In other words, under a properly established RT
system engineering methodology, every practically
useful non-RT computer system must be realizable
by simply filling the time constraint specification
part with unconstrained default values.

The current reality in RT computing is far from
this desirable state and this is evidenced whether
one looks at the subfield of operating systems or
that of software/system engineering tolls.

Another issue of growing importance is to
provide in the future an order-of-magniture higher
degree of assurance on the reliability of distributed
time triggered simulation products than what is
provided today.

To require the system engineer to produce
design-time guarantees for timely service capabilities
of various subsystems which will take the form of
objects in OO system designs“m]mmm

The major factor that has discouraged any
attempt to do this has been the use of software
structuring  approaches and program execution
mechanisms and modes which were devised to
maximize hardware utilization but at the cost of
increasing the difficulty of analyzing the temporal
behavior of the RT computation performed.

Most concerns were given to the issue of how to
maximally utilize uniprocessor hardware even at the
cost of losing service quality predictability.

System engineers were more willing to ignores a
small percentage of peak-load situations which can

occur and can lead to excessively delayed response
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of distributed time triggered simulation, instead of
using more hardware-consuming design approaches
for producing timeliness-guaranteed systems.

Il .General frame work for systematic
deadline handling

Fig.1 depicts the relationship between a client and
a server component in a system composed of hard
real time components which are structured as
distributed computing objects.

The client object in the middle of executing its
method, Methodl, calls for a service, Method 7
service, from the server object. In order to complete
its execution of Method 1 within a certain target
amount of time, the client must obtain the service
result from the server within a certain deadline.

Client Object

Server QObject

d

Deadiine for result Domain of ~ Guaranteed Service
arrival communication time {server

(Client's Deadline) infrastructure  execution deadline

Fig. 1 Client's deadline vs Server's guaranteed service time

This client’s deadline is thus set without
consideration of the speed of the server. During the
design of the client object, the designer searches for
a server object with a guaranteed service time
acceptable to it (6T},

Actually the designer must also consider the time
to be consumed by the communication infrastructure
in judging the acceptability of the guaranteed

service time of a candidate server object.
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In general, the following relationship must be
maintained:

Time consumed by communication infrastructure
+ Guaranteed service time
transmission  times

<Maximum imposed on

communication infrastructure +Guaranteed service
time <Deadline for result arrival-Call initiation

instant

where both the deadline imposed by the client for
result arrival and the initiation instant of the client’s
remote service call are expressed in terms of
absolute real time, e.g., 10am.

There are three source from which a fault may
arise to cause a client’s deadline to be violated.

They are (s1) the client object’s resources which
are basically node facility, (s2) the communication
infrastructure, and (s3) the server object’s resources
which include not only node facility but also the
object code.

The server is responsible to finish a service
within the guaranteed service time, while the client
is responsible for checking if the result comes back
within the client’s deadline.

Therefore, the client object is responsible for
checking the result of the actions by all the resource
involved, whereas the server object is responsible
for checking the result of the actions of (s3) only.

t,  An overview of the Real-Time
Simulation Programing scheme

The RTSP programming scheme is a general
style component programming scheme and supports
design of all types of components including
distributable hard-RT object and distributable
non-RT objects within one general structure[9][11].

RTSPs are devised to contain only high-level
intuitive and yet precise expressions of timing

reguirements.

No specification of timing in terms other than
start-windows and completion deadlines for
program units and time-windows for output actions
is required.

The RTSP scheme is aimed for enabling a great
reduction of the designer’s effort in guaranteeing
timely service capabilities of distributed computing
application systems.

It has been formulated from the beginning with
the objective of enabling design time guaranteeing
of timely actions.

The RTSP
execution of its components that make the analysis
of the worst case time hehavior of RTSPs to be

systematic and relatively easy while not reducing

incorporates  several rules for

the programming power in any way.
The basic structure of the RTSP model consists
of four parts as follows:

RTSP = {ODS-sec, EAC sec, SpM sec,
SvM sec)

Where

ODS-sec = object-data -store section: list of

object-data-store segments(ODSS’s);

EAC-sec = environment access-capability section:
list of RTSP-name. SvM-names programmable
communication channels, and I/O devices,

SpM-sec = spontaneous-method section: list of
spontaneous -methods;

SvM-sec = Service-method

service-methods.

section:  list  of

The RTSP model is a syntactically minor and
semantically powerful extension of the conventional
object model.

Significant extensions are summarized below and
the second and third are the most unique extensions.

(a) Distributed computing component
The RTSP is a distributed computing component
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and thus RTSPs distributed over muitiple modes
may interact via remote method calls. To maximize
the concurrency in execution of client methods in
one node and server methods in the same node or
different nodes, client methods are allowed to make
non-blocking types of service requests to server
methods.

(b) Clear separation between two types of
methods

The RTSP may contain two types of methods,
time-triggered(TT-) methods called the
spontaneous methods or SpMs) which are clearly

(also

separated form  the conventional service
methods(SvMs). The SpM executions are triggered
upon reaching of the RT clock at specific values
determined at the design time whereas the SvM
executions are triggered by service request
messages from clients. Moreover, actions to be
taken at real times which can be determined at the

design time can appear only in SpM'’s,

(c) Basic concurrency constraint(BCC)

This rule prevents potential conflicts between
SpM'’s and SvM's and reduces the designers efforts
in  guaranteeing timely service capabilities of
RTSP’s. Basically, activation of an SvM triggered
by a message form an external client is allowed
only when potentially conflicting SpM executions
are not in place. An SvM is allowed to execute only
if no SpM that accesses the same object data store
segments(ODSS’s) to be accessed by this SvM has
an execution time-window that will overlap with the
execution time-window of this SvM.

(d) Guaranteed completion time and deadline

As in other RT object models, the RTSP
incorporates deadlines and it does so in the most
general form. Basically, for output actions and
completion of a method of a RTSP, the designer
guarantees and advertises execution time-window
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bounded by start times and completion times.
Triggering times for SpM's must be fully specified
as constants during the design time. Those RT
constants appears in the first clause of an SpM
specification called the autonomous activation
condition(AAC) section. An example of an AAC is
for t = from 10am to 10:50am every 30 min
start—during(t, t+5 min) finished-by t+10 min.

A provision is also made for making the AAC
section of an SpM contain only candidate triggering
times, not actual triggering times, so that a subset
of the candidate triggering times indicated in the
AAC section may be dynamically chosen for actual
triggering.

Such a dynamic selection occurs when an SvM or
SpM  within the same RTSP requests
executions of a specific SpM.

RTSP’s interact via calls by client objects for

future

service methods in server objects.

The caller maybe an SpM or an SvM in the client
object. The designer of each RTSP provides a
guarantee of timely service capabilities of the object.

He/she does so by indicating the guaranteed
execution time-window for every output produced
by each SvM as well as by each SpM executed on
requests from the SvM and the guaranteed
completion time for the SvM in the specification of
the SvM. Such specification of each SvM is
advertised to the designers of potential clients
Before time-window
specification, the server object designer must
convince himself/herself that with the object
execution engine (hardware plus operating system)
available, the server object can be implemented to
always execute the SvM such that the output action
is performed within the time-window. The BCC
contributes to major reduction of these burdens
imposed on the designer. Models and prototype

objects. determining  the

implementations of the effective operating
system(OS) support and the friendly application

programmer interface(API) have been developed.
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The RTSP model is effective not only in the
multiple-level abstraction of RT(computer) control
systems under design but also in the accurate
representation and simulation of the application
environments. In fact, it enables uniform structuring
of control computer systems and application enviro-
nment simulators and this presents considerable
potential benefits to the system engineers.

V. Interaction among RT objects and RT
message communication

4.1 Non-blocking call

An underlying designs philosophy of the RT OO
distributed computing approaches is that every RT
DCS will be designed in the form of a network of
RT objects. RT objects interact via calls by client
objects for service methods in server objects. The
caller may be a TT method or a service method in
the clients. In order to facilitate highly concurrent
operations of client and server objects, non-blocking
(sometimes called asynchronous) types of calls(i.e.,
service request) in addition to the conventional
blocking type of calls service methods should he
allowed. Therefore, the RTSP scheme supports the
following two basic types of calls to service
methods in the server RTSP.

(1) Blocking call: After calling a service method,
the client waits until a result message in returned
from the service methods. The syntactic structure
may be in the form of

Obj-name.SvM-name(parameter-1, parameter-2,,
by deadline).

Since the client and the server object may be
resident in two different processing nodes, this call
1s in general implemented in the form of a remote
procedure call. Even if there is no result parameter

in the service method, the execution completion
signal from the server method does not arrive by
the specified deadline, then the execution engine for
the client object invokes an appropriate exception
handling function as it would when an arithmetic
overflow occurs.

(2) Non-blocking call: After calling a service
method,
steps(i.e., statements or instructions) and then wait

the client can proceed to follow-on

for a result message from the service method. The
syntactic structure may be in the form of

Obj -name.SvM-name(parameter -1 parameter-2,",
mode NWFR, timestamp TS):

******** statements—--—---;

get-result Obj—name.SvM-name(TS) by deadline;

NWFR which is an
abbreviation of No-Wait-For-Return

The mode specification
indicates that
this is a non-blocking call. When the client calls the
service method, the clients records a time-stamp
into a variable, say TS. The time-stamp uniquely
identifies this particular call for the service method
from this client. Therefore, later when the client
needs to ensure by execution of the get-res
ult statement the arrival of the results returned
form the earlier non-blocking call for the service
method, not only the service method name but also
the variable TS time-stamp
associated with the subject call must be indicated.
When a client make multiple non-blocking calls for
service methods before executing a get-result

containing  the

statement, the time-stamp unambiguously indicate
to the execution engine which non-blocking call is
referred to. If the results have not been returned at
the time of executing the get-result statement, the
client waits until the execution engine recognizes
the arrival of the results. A non-blocking call thus
creates concurrency between a client method(TT
method or service method) and a service method in
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a server ohject and the concurrency lasts until the
execution of the corresponding get-result statem-—
ent. In some situations, a client does not need any
result forrmn a non-blocking call for a service
method. Such a client does not use a get-resuit

statement.

4.2 Client-transfer call
Even though its needs were initially recognized in
of the RTSP scheme, it
fundamental nature and may be useful in almost all
types of RT systems, Basically, an SvM in a RTSP

the context is of

may pass a client request to another SvM by using
a client-transfer call. The latter SvM may again
pass the client request to another SvM. This
chaining sequence may repeat until the last SvM in
the chain returns the results to the client. The main
motivation behind such a client-transfer call stamp
from BCC which require an execution of an SVM to
be made only if a sufficiently large time-window
between executions of SpMs potentially conflicting
with the SvM opens up. Hence, in certain situations
a highly complicated SvM may never be executed
due to the lack of a wide enough time-window. One
way to get around this problem is to divide the
SvM into multiple smaller SvMs, SvM1,,, SvMx. A
client can then call each smaller SvM each time.
Calling each smaller SvM incurs the communication
overhead of transmitting a request to the smaller
SvM and obtaining the results. Substantial reduction
of such communication overhead is the motivation
behind an arrangement in which the client calls the
first SvM and the
contract with the client on to another SvM and so
on until the last SvM of the chain returns the

latter passes the service

results to the client.

As a part of executing this client-transfer call for
an SvM, the execution engine terminates the caller
SvM, places a request for execution of the called
SvM into the service request queue for the called
SvM, and establishes the return connection from the
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called SvM to the client of the caller SYM that has
just been terminated. When the return statement
in the called SvM is executed, the results are
returned through the return connection established.
Since the external clients which called the first SvM
cannot predict form which SvM it will receive
returned results, it is implemented to accept results
without having to know which SvM the results
came form.

A client-transfer call may involve passing
parameters in an explicit manner as done in the case
of a call by an external client or passing information
through the shared data structures in the ODS. The
syntactic structure for such a client-transfer call for

an SvM may be in the form of
ClientTransferCall{(SvM_name, parameters)

SvM_name identifies the SvM being called. The
ID of the port or channel through which the current
client of the caller SvM is prepared to receive return
results is passed by the object execution engine
onto the execution support record for the SVM being
called. That is, a proper return connection is
established between the SvM being called and the
current client of the caller SvyM. The parameters
may include the parameters newly created by the
caller SvM as well as those created by predecessors
in the client-transfer chain.

There is no reason why this client-transfer call
cannot be extended to the case of calling an SvM in
another RTSP. The syntactic structure for such a
client-transfer call for an external SvM is about the

same, 1.€.,

ClientTransferCall{Obj_name.SvM_name,paramete
rs)

In fact, there is no essential need for a client to
distinguish between the case where results are
returned form the called SvM and the case where
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results are returned form another SvM.

Actually, one can take the view that accepting
results returned form the called SvM is a special
case of accepting results returned form any SvM in
the system.

4.3 RT message communication and
programmable multicast channels
Whether a service request is a blocking call or a
non-blocking call, the request message and the
result return message must be communicated with
predictable delay bounds. May protocols suitable for
communication local

over area

eg.
time-division multiplexed access{TDMA), token ring
access, deterministic CSMA/CD, ATM, etc.

In addition to the interaction mode based on

RT message
networks and wide area networks exist,

remote method invocations, distributed RT objects
can use another interaction mode where messages
may be exchanged over message channels explicitly
specified as data members if involved objects. See
Fig.l. For example, logical multicast channels,
LMC1 and LMC2, can be declared as data members
of each of the three remotely cooperating RT
objects, RTSP1, RTSP2, and RTSP3, during the
design time. The compiler and the object execution
engines running the tree RT objects must then
together facilitate the two channels and guarantee
timely transmission of message over those channels.
Once RTSP1 sends a message over LMCI, ten the
message will be delivered to the ODS of each of the
three RT objects. Later during their execution
certain methods in RTSPZ2 and RTSP3 can pick up
the messages that came over LMCI1 into the ODSs
of their host objects. In many applications, this
interaction mode leads to better efficiency than the
mode remote  method
invocations does.

interaction based on

V. RT Object Structuring Tool and the
RTSP Approach

In this section, major desirable capabilities of a
full -featured RT object
discussed along with the approaches adopted in the
RTSP scheme to realize such capabilities. This

structuring tool are

discussion, together with the overview given in Sec.
3, reveals almost all the important features of the
RTSP scheme.

Clear specification of timing constraints is a
fundamental requirement in rigorous engineering of
RT computer systems. Major issues in this area are:

(1) Global time base;

(2) Time-triggered (TT) action; and

(3) Separation of the absolute time domain from
the relative time domain.

5.1. Global time base

In any practical RT system design or
programming language, the following features must
be included:

(1) Specification of time bases: This includes
specifying UTC (Universal Time Coordinated), SST
(the time elapsed since the distributed system
started), etc.

(2) Global-time reference function: This includes
now which returns the current time obtained from
the global time base, forever which is a time
constant representing a practically infinite time
interval, etc.

Naturally, the RTSP scheme provides these

facilities.

5.2 Time-triggered (TT) action
Specification of TT  computations is a
fundamental feature of RT programming that
distinguishes RT non-RT
programming. The computation unit can be any one

programming from

of the following:
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(1) Simple statement such as an assignment
statement with the right-side expression restricted
to an arithmetic logical expression type involving
neither a control flow expression nor a function call,
an I/O command statement, etc.,

(2) Compound statement such as if-then— else
statement, while-do statement, case statement, etc.;

(3) (Statement) Block;

(4) Function and Procedure;

(3) Object method.

TT actions associated with a computation unit
may include TT initiation of the computation unit,
timely completion of the computation unit, and
periodic execution. Therefore, in any practical RT
system design or programming language, it is

desirable to have the following type of a construct:

ab timing specification begin

for <time-var> = from <activation-time>
to <deactivation-time>
[every <period>]

start-during
(<earliest-start-time>,
<latest-start-time>)

finish-by <deadline>

ae timing specification end

For example, consider the following case.

for t = from 10am to 10:50am every 30 min
start-during (t, t+5min) finish-by t+10 min

This specifies: The associated computation unit
must be executed every 30 minutes starting at 10am
until 10:50am and each execution must start at any
time within the Sminute interval (t, t+bmin) and
must be completed by t+10min.

So, it has the same effect as
10:05am)  finish-by

{ start-during  (10am,
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10:10am
start-during
10:40am ).

(10:30am, 10:35am) finish-by

Of the five types of computation nits mentioned
above, the object method is the most frequently
used unit for TT initiations and completion time
checks. The RTSP execution engines built so far
fully allow the specifications of TT Iinitiations,
completion deadlines, and periodic executions to be
associated with object methods but only to a limited
extent TT
methods. In other words, object methods, SpM's and
SvM’s, are about the only basic schedulable
computation units fully supported so far. This does
not seriously limit the programming power and
flexibility offered to RT programmers and yet
greatly simplifies the job of constructing reliable

executions of segments of object

efficient execution engines, However, there is no
intrinsic limitation of the RTSP structure that
prevents the incorporation of TT initiation into other
computation units. Such an extension just requires
construction of RTSP execution engines capable of
accurately scheduling finer-grain RT computation
units.

To support T'T executions of method segments in
a limited form, an SpM may contain

do S and
do S

at global-time-constant
after global-time-constant

statements, where global-time-constant must be
an RT instance preceding the completion deadline of
the SpM. Such statements can be executed by the
execution engine without incorporating any new
major OS(scheduler) parameters. A simple OS
service such as yield the current time-slice of mine
to another thread if global-time constant is more
than one time-slice away from now , can be easily
implemented and support the statements weil.
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5.3. Separation of the absolute time
domain from the relative time domain
From the viewpoint of obtaining easily
understandable and analyzable RT programs, it is
also good to clearly separate the specification of the
computation dealing with the absolute time domain,
i.e., the computation dependent of the time-of-day
information available from the global time base,
from the specification of the computation dealing
with the relative time domain only. In the case of
the RTSP structuring scheme, SvM's deal with the
relative time domain only, ie, they use only the
elapsed intervals since the method was started by
an invocation message from an object client. This is
natural since the arrival time of a service request
(i.e., a message invoking a service method) from an
object client cannot be predicted by the designer of
the service method in general, especially when that
designer is not the designer of the client object.
Therefore, with one exception to be discussed
below, any use of the time-of-day information can
be used within SpM's only. This means that

computations of the type

at global-time-constant do S or
after  global-time-constant do S

can appear only in SpM'’s.

The only exception allowed is that an arithmetic
logical expression consisting of now and global time
constants may be used in a server method for the
purpose of selecting candidate triggering times
associated with SpM'’s.

V. Conclusion

Deadline handling is a fundamental part of
real-time computing. This paper has proposed a
general broadly applicable framework for systematic

deadline handling in RT distributed objects. A

prototype implementation of the basic middleware
support for the proposed deadline handling scheme
has been completed recently. However, the cases
where advanced RT fault tolerance techniques such
as those for active replication of RTSP method
executions are used, have not yet been dealt with
and remain a subject for future study. Systematic
deadline handling is an area where much more
experimental research is needed.
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