An Agent System Protection Mechanism for
Secure Action of Mobile Agent in Open
Network Systems

Chang-Ryul Jung* - Hong—-Sang Yoon** - Jin—-Gwang Koh#***

Open Network A|AE|A] o]Fofo]AE] QtAgh &g

m°“
o
o
H0
ro,
2
o
s)

E
Tl

AR i R

ABSTRACT

In the resent years, the term mobile agent is probably one of the most overused words in many
appliable areas of distributed open systems as electronic commerce and electronic data interchange, and it
has very different meanings in the area of artificial intelligence, network management, or distributed
systems. However, the use of mobile agent adds significant problems, primarily in the area of EC/EDL
Therefore it is very important to control the roaming agents to keep one’s privacy or property in
distributed open networks. The surge in secure intranets for commercial applications provides a robust,
secure environment to which trading partners can increasingly entrust their interactions to some mobile
agents. In this paper, we introduce a mechanism to protect mobile agent itself from the malicious server
he is visiting and also we introduce a mechanism to protect vital resources of the open systems as internet

oF
OF

i

H g2 d o] FololdEE BAAsde] A dAg et Aol o] et 152y, e 2
& o] F&FofollA Wo] o] &H 1 A EobF dtutelrt. 53] EC/EDIY F oA o] o]Foo]HE
A EAE Frheke) Abgsiojor gk aeju g PN ER A o]FstE dlo]dES LalonAg £4E
HEahs AL e S8tk A7 el &857) YAz 24z ool dELE Faztel Ao A
g 7 e kdd e o] Wasi

B AFNAE ol FellolHES G M) MR RE ool dES A4S HEsal Qe e oF
Azde] AYNEES BRoshs QHHE o] Folo]HE A8E FHYSLE sz doJHE B vAUEE LA
of A8t HYAHE Aot

7=
Mobile Agent, EC/EDI, Protection Mechanism, Agent Protection
« st] 3Re] gheket whababy wi et PYHHARS A S wg

wer SEUTYSH YREAFRY Gig A% 202 415

Aol FH LTS A A6d A2

I . Introduction

As the use of internet has grown rapidly, the
advances of the computer networking are extending
the vision of on-line control beyond the walls of the
single plant or even the individual firm. Electronic
Data Interchange(EDI) is making many firms more
comfortable with on-line interactions that cross
company boundaries. The use of web browsers as a
Common Gateway Interface(CGI) for a wide range
of applications, and the ability of Java to support
distributed
platforms, provide a common computational platform

common programs across multiple
that can span a wide geographic rangem. Adding
the mobile agents into the EC/EDI makes innovative
approach to structure distributed applicationsm.
Also, the use of mobile agent requires that each
cooperating host in the distributed system should
provide a facility for executing them.

In open distributed systems, such as the internet,
it is unwise to assume that all agents are benign,
and thus a certain amount of effort must be spent to
ensure that sensitive resources are protected from
unauthorized access. This can be accomplished by
using a system of capabilities and by predicating
resource access on possession of the appropriate
capability. It is unreasonable, however, to expect
that every use of every resource in a network be
thus verified dynamically; such a requirement surely

would degrade performance unacceptably. Thus it is

attractive to develop some mechanisms that
guarantee controlled access to host resources.
For introducing a mobile agent security

mechanism, we first study about the structure of
mobile agent and security considerations of the
mobile agents recently developed and released. After
surveying the security abilities of mobile agents, the
appropriate security mechanism is introduced for
giving the incoming agents a trusted execution
environment of the system resource access. It
environmental facilities to the

requires some

372

incoming agents. Then we explain the mechanisms
to protect mobile agents from malicious agent
server, and protect agent servers from malicious
mobile agents. Finally, the contributions of our work
and further works are mentioned in the last section
of this paper.

. Mobile agent execution

The basic task of any mobile agent system is the
actual execution of mobile agents. This means that
the code of a mobile agent has to be executed in the
context of the data and facilities available at an
agent server, which were the original reason for the
migration of the mobile agent to this agent server.
Figure 1 shows a mobile agent system in general.
The execution of an agent’s code is accomplished in
an execution environment that is provided from the
agent server. The execution environment is an
integral part of the agent server and is also
responsible for the provision of a standardized
runtime library with a well defined API(Application
Programmers Interface)[5]. This runtime library
implements the interface between the mobile agents
and the other services offered by the agent server.
It also allows to reduce the size of mohile agents
since they do not need to carry the code which they
can be confident to find on the agent server.

The primary identifying characteristic of mobile
agents is their ability to autonomously migrate from
host to host. An agent can request its host server to
transport it to some remote destination. The agent
server must then deactivate the agent, capture its
state, and transmit it to the server at the remote
host. The destination server must restore the agent
state and reactivate it at the remote host, thus

completing the migration.

i/ An Agent System Protection Mechanism for Secure Action of Mobile Agent in Open Network System

A lost A Host
Oneraling Onerating
Agent Agent
Platf Ha“"’ Platf Platfor
O a
IS
] To ¢

agenl-age

ol
Fig. 1 A mobile agent system
Table 1. Agent mobility support
System Naming Migration
Agent Tel Location dependent Absolute

based on DNS Command © agent-jump

Location dependent URLs|| Absolute

rlets -« . .
Aglets bhased on DNS names Command : dispatch
. Absolute
. . Location dependent
cordie . ased on
Concordia based on DNS I} 15 on the Agent's
Itinerary

Tacoma Location dependent Absolute and Relutive

) “ |l based on DNS Command : meet

, Location independent Absolute and relative
Vovager

based on global 1D Command @ moveTo

The agent code can then direct the control flow
appropriately when the state is restored at the
destination. However, this only captures execution
state at a function-level, in contrast to the machine
instruction-level state provided by the thread
context.

Another issue in implementing agent mobility is
the transfer of agent code. One possibility is for the
agent to carry all its code as it migrates. This
allows the agent to run on any server which can
execute the code. Some systems do not transfer any
code at all, and require that the agent’s code be

pre-installed on the destination server. This is

advantageous from a security perspective, since no
foreign code is allowed to execute. However, it
suffers from poor flexibility and limits its use to
closed, local networks. During the agent’s execution,
if it needs to use some code that is not already
installed on its current server, the server can
contact the code base and download the required
code. This s
code-on-demand. The table 1 shows Agent mobility

sometimes referred to as

supported by some mobile agent systems.

. Design of Protection mechanism for
mobile agent system

The security problems in mobile agent systems
are due to the fact that the various principals in a
mobile agent system who are the operators or
owners of the different components and who lend
their authority to these components, can not be
assumed to trust each other™. Security in a mobile
agent system is concerned with the protection of the
two primary components that we have identified:
the mobile agent and the agent server. The mobile
agent has to be protected from tampering and from
disclosure while it is in transit, but it should also be
protected when it is executing on an agent server.
The agent server in turn must be protected from

malicious or simply buggy mobile agentsm‘

3.1 Protection of the mobile agent
Protecting the mobile agent while traveling over
an untrusted network, when it is marshaled into its
transport format, amounts to the well known
problems of confidentiality and integrity protection

6]

of messages”. Due to the special structure of

mobile agents, the differentiation between the
changeable and the unchangeable parts of an agent
is exist, which can be independently protected.
Provided that the mechanisms used for integrity

protection support origin authentication, for instance

373

A FH RSN A A6 A2%

by using appropriate public-key signatures, the
unchangeable part can be signed by the agent owner
to assert that it has not been tampered with while
in transit. Also, the unchangeable parts of a publicly
available agent may not have to be confidentiality
protected, unless the user wants to hide the fact
that he is using this mobile agent. The changeable
part of a mobile agent can be integrity and
protected with the help of
well-known cryptographic mechanisms. If additional
accountability is required, the intermediate states of
the mobile agent can be signed by the agent
executors and gathered in the mobile agent. The
two parts should be tied together with appropriate
cryptographic mechanisms to prevent an attacker

confidentiality

from arbitrarily composing these pansm.

The problem of protecting a mobile agent when it
1s executing on an agent server consists of
protecting it from other agents on the same agent
server and from the agent server itself, which may
be operated by a malicious agent executor. The
former problem is a well-known problem from
operating systems that has to be addressed in the
resource management. The agent execution service
can rely on memory protection and access control
mechanisms to prevent local agents or other entities
from accessing or tampering with the code or state
of a mobile agentm. The latter problem, which is
concerned with preventing undesired access to or
manipulation of the mobile agent’s state or code by
the agent server, can be solved by assigning all the
separated

in the
memory. All of the base and bounds are assigned in

statements of an agent in logically

registry as base and bounds registers

a different access entries as "R: read only” and "X:
execute only”. All of the access request from the
agent server or even the other agent must be
followed by the restrictions of the access entry. If
any violations occurred during the agent execution,
it will be reported to the host and stop execution.
Then the agent will migrate to the next itineraries.

374

Fig. 2 Logical assignment of a mobile agent

Logical separation [Contents of an agent|

Basel(R)

: Agent Code
Bound1(R)
Base2(R) A

: Agent data gent
Bound2(R) statement
Base3(X)

: Agent state
Bound3(X)

This mechanism is designed to protect mobile
agent’s data from destroying, manipulating, or
disclosing it. A simple diagram of base and bounds
registry protection is shown in the fig 2.

When an agent executes on a host’s agent server,
it is in effect completely exposed to that host. The
act of migrating to a server implies a certain level
of trust in that server and its host. If the server
happens to be malicious, it can affect the agent in
many different ways: @D It can simply destroy the
agent and thus impede the functioning of its parent
application. @ It can steal useful information stored
in the agent, such as intermediate results gathered
by the agent during its travels. @ It can modify the
data carried by the agent, for example changing the
price quoted by a competitor in a shopping mall, to
fool the parent application into favouring the
malicious server. @ It can attempt to change the
agent’s code and have it perform malicious actions
when it returns to its home site. This is especially
dangerous, since the home site could believe its own
agents as trusted entities, and possibly allow them
to bypass access controls to its own resources.

An agent server must of necessity have access to
the agent’s code and state in order to execute it.
Parts of state in fact must usually change, in order
to store the results of computations or quenes. Thus
it is not possible to provide a general guarantee that
the agent will not be maliciously modified. However,
the parent application must have some mechanism
for detecting such modifications. If it determines

i/ An Agent System Protection Mechanism for Secure Action of Mobile Agent in Open Network System

that the agent has been ‘‘attacked’’, it can take
appropriate measures, such as executing it in a
restricted environment or even discarding it
altogether. When an agent is dispatched, it has an
initial itinerary of hosts to visit. Different parts of
the agent may be intended for different hosts, and
some parts may need to be kept secret until the
agent arrives at the intended host[12]. This allows
the application to ensure that the agent followed the
intended itinerary.

One of the toughest challenges in our agent
security mechanism is the protection of agent code
and state from malicious servers they happen to
execute on. While no general- purpose solutions
seem feasible at this stage, we designed and
implemented a mechanism for protecting parts of the
agent state. Some moduies in the state can be made
read-only; others can be inserted into unmodifiable
containers. Parts of the state can be targeted
towards specific agent servers, such that other

servers cannot read or tamper with them,

3.2 Protection of the agent server

The remainder of this section is concerned with
the problem of protecting the agent server from
malicious mobile agents that try to circumvent the

protection mechanisms established by the agent
server. Another security mechanism is to protect the
facilities such as excessive and uncontrolled use of
cpy, memory, or communication bandwidth of an
agent server, which are the primary assets of the
In addition,
responsible to protect other mobile agents executing

agent executor{9]. they are also
on the same agent server from malicious agents.
This problem is very similar to the problem of
protecting a host from downloadable mobile code.
The introduction of mobile code in a network
raises several security issues. In a completely closed
it Is possible to trust all

installed on them™.

local area network,
machines and the software
Users may be willing to allow arbitrary agent
programs to execute on their machines, and their
agents to execute on arbitrary machines. However,
in an open network such as the Internet, it is
entirely possible that the agent and server belong to
different administrative domains. In such cases, they
will have much lower levels of mutual trust. Several
types of security problems may arise:

(1) Servers are exposed to the risk of system
penetration by malicious agents, which may leak
sensitive information. @ Sensitive data contained
within an agent dispatched by a user may be

Agent
T'ransfer
Module

.. —
4. [Check 6. A¢cess
Penied R S();LII”CE Resqurce
Agent Security Policy | | Resource Access Resource
Template [~ .
Registry Protocol

Fig. 3 Trusted Execution Environment

375

S FHLENGs| A A6 A2E

compromised, due to eavesdropping on insecure
networks, or if the agent executes on a malicious
server. & The agent’s code, control flow and
results could be altered by servers for malicious
purposes. @ Agents may mount “denial of service”
attacks on servers, whereby they destroy server
resources and prevent other agents from
progressing.

Therefore, as we proposed in this paper, the
mobile agent system must provide a strong security
mechanisms for protecting either agent itself or host
resources. These include privacy mechanisms to
data and code,

establish the

communicating parties and authorization mecha-

protect secret authentication

mechanisms to identities of
nisms to provide agents with controlled access to
server resources. Building on the secured resource
registry, a resource protection facility for servers
was designed. Based on the concept of proxy
interposition, this scheme allows servers to make
with

over their access

resources available to agents securely,

dynamic, fine-grained control
rights[8]. Metering and accounting mechanisms can
also be built in so as to allow servers to charge
agents for the resources they use. The next section
of this paper describes this resource access

mechanism.

3.2.1 Build a trusted execution environment

The allocation of these resources must be guided
by some policy of the agent server, which identifies
what kind of and how many resources should be
made available to a mobile agent.

Once certain resources have been allocated to an
agent, confining the agent to these resources is a
very important issue. Most of the mechanisms
required for this purpose are well-known operating
system mechanisms. The CPU can be protected
from monopolization or excessive use through a
clock interrupt, which limits the amount of time an
agent can execute. The creation of new threads can

376

be regulated via a limitation on memory usage and
on the number of CPU cycles consumed by all the
threads that belong to a certain agent. The access
to memory can be protected with base and bounds
registers or paging mechanisms'”.

very important in the context of security and allows

This issue is

us to protect the agent server from possibly
malicious mobile agents and mobile agents from one
another. We assume that any access to resources
other than the CPU and memory will be mediated
through functions in the runtime library offered by
the TEE(Trusted Execution Environment) which
includes the allocation of new memory. It is
therefore the task of the execution environment to
implement generic access control mechanisms for
other resources and to enforce the access control
policy defined for the agent server.

Whenever the agent calls a potentially dangerous
operation, the Trusted Execution Environment acts
as a monitor and screens the request based on its
security policy. If it is allowed to proceed, it calls
the trusted environment which provides the actual
access to the resource. The resource provider, then
retains complete control over the security policy,
and can customize the policy for each resource type
by using trusted execution environments as proxies.
The proxy objects can be tailored to specific agents
and dynamically generated as required(see figure 4).
Once a safe proxy is made available to an agent,
access control checks only require a minimal amount
of computation since the security policy need not be
consulted. Security policy checks are performed only
once at the time of issuing a capabilitym. Resource
access only submitted
capability for tampering. If the security policy
changes, however, a previously issued capability
may need to be cancelled.

involves checking the

V. Conclusion

The specific research challenges related to

W/ An Agent System Protection Mechanism for Secure Action of Mobile Agent in Open Network System

security that this paper addresses include the
protection of host resources from malicious agents
and the protection of agents from tampering by
other agents or their hosts. Our contributions in
addressing these challenges are detailed in the
trusted execution environment that we designed and
implemented. A mobile agent server must support
the secure execution and migration of mobile agents.
It should also provide a mechanism for agents to
hind themselves to their host environment, and be
able to access the resources available at the server.
Access control and authentication are necessary so
that the system can ensure that resources are not
misused. Secure interfaces for application control
over remote agents must also be provided. The
trusted execution environment is designed to
address these requirements. The trusted execution
environment provide secure resource registry in
which they
agents from tampering with other agents. Resources

isolate agents, preventing malicious

are made available to specific secured domains in a
controlled manner. All entities in the system are
assigned global, location-independent names, and a
name service is provided for translating entity
names into their current locations. Agents are
assigned credentials which identify them along with

their ownership information.

Bibliography

[1] B.C. Neuman. proxy-based authorization and

accounting for distributed

Proceedings of the

Conference on Distributed Computing Systems,
pages 283-291, May 1993.

[2] Colin G. Harrison, David M. Chess, and Aaron

Kershen, baum. Mobile Agents: Are they a good

systems. In
Thirteenth International

idea? Technical report, IBM Research Division,
T.J.Watson Research Center, March 1995.
http://www.research.ibm.com/massdist/

mobag.ps.

[3] Dag Johansen, Robbert van Renesse, and Fred B.
Schneider. Operating System Support for Mobile

the 5th [EEE
Workshop on Hot Topics in Operating Systems,
pages 42-45, May 199.

[4] H. Van Dyke Parunak. Practical and Industrial
Applications of Agent-Based Systems.
http://www.iti.org/,
Institute, 1998.

[5}) Hong-sang Yoon. Thesis: A Security Mech
anism of Mobile Agent on the Distributed
Communication Networks. Dec. 1999.

[6] Robert S. Gray. Agent Tcl: A flexible and secure

mobile-agent system. In Proceedings of the

Fourth Annual Tcl/Tk Workshop(TCL '96), July

1996.

Tomas Sander and Christian F. Tschudin. To

Agents. In Proceedings of

Industrial Technology

(7

—

wards Mobile Cryptography. Technical Report
TR - 97 - 049, Computer Science
Institute, Berkeley, California, November 1997.

William M. Farmer, Joshua D. Guttman, and

International

(8

==

Vipin Swarup. Security for Mobile Agents:
Issues and Requirements.
In Proceedings of the 19th National Information
Systems Security Conference, pages 591--597,
October 1996.
[9] W. Stallings. Network and Internetwork Security
Prentice Hall, Inc.
Englewood Cliffs, New Jersey,

Principles and Practice.

S IR |

XM &#E(Chang-Ryul Jung)

1996 @ oietal A AHA A
38 4})
L 19999 &dugn st

736 it & (A A
20001 ~ &4 %3 ol st
o 7 e dtetah vhAba A

o)t

377

G| FHRENTE A A6H A2

YAl Rof ¢ AR N AR AY, HEV TS Bt
Image Processing

#22HHong-Sang Yoon)
198711 Western Illinois Univ. 58}
(o] A}

19901 WIUdistel 7 3FE] st
(o] 82 Ah

2000 =g jErd HFHE
u}pefj(o] hukAl)

2000. 8~ & A FFoistn AFEHYEZANSEE A<
A

HTA RO ¢ HYHHO o]Fdo]HE, HHFA

DX Z(Jin-Gwang Koh)

198291 Fioigtal e $Et e
(o] 8tAH
19843 Fduigtnl gy HitE
& &ha}(o] 3t A}
1997L4 sty mEtd #HiFH
5 &7} (o] 8hekA})

wojat WA AR

19%4. 3 SRR

1988, 3~& 4 Ay FHEd AHFAFsHE

W4

1992, 3~1993. 2 ¥9uigtn Fyofd HiFe 3
B B e

1997. 8~1998. 8 Oregon State Univ. 7376138t

g

2000. 12~2001. 2 A¥ FH S HuFsat PRy
2001. 3~2002. @A FHH YR ANAF

KA ROk 1 HlolEjulo] 2, AAAH, Fuuch

378

