Trellis-coded $\pi$/8 shift 8PSK-OFDM with Sliding Multiple Symbol Detection

흐름 다중 심벌 검파를 사용한 트렐리스 부호화된 $\pi$/8 shift 8PSK-OFDM

  • ;
  • ;
  • ;
  • Zhengyuan Xu (University of California, Riverside(USR))
  • Published : 2002.06.01

Abstract

In this paper, we propose $\pi$/8 shift 8PSK and trellis-coded $\pi$/8 shift 8PSK-OFDM techniques by applying $\pi$/4 shift QPSK to trellis-coded modulation (TCM), and performing signal set expansion and set partition correspondingly based on phase difference. In our Viterbi decoding algorithm, up to L phase differences from successively received symbols are employed in the new branch metrics. Such sliding multiple symbol detection (SMSD) method provides improved bit-error-rate (BER) performance in the differential detection of the trellis-coded $\pi$/8 shift 8PSK-OFDM signals. The performance improvements are achieved for different communication channels without sacrificing bandwidth and power efficiency. It thus makes the proposed modulation and sliding detection scheme more attractive for power and band-limited systems.

본 논문에서는 $\pi$/4 shift QPSK를 트렐리스 부호화 변조에 적용시키기 위해 $\pi$/8 shift 8PSK와 BER 특성을 향상시키기 위한 트렐리스 부호화된 $\pi$/8 shift 8PSK-OFDM을 제안한다. 트렐리스 부호화 변조는 위상차에 의한 신호 집합 확장과 분할을 수행한다. 수신측에서 슬라이딩 방식의 다중 심벌 검파를 수행하기 위해서 연속 수신된 신호로부터 L개의 위상차를 추출하고 이를 이용한 비터비 디코더를 설계한다. 슬라이딩 방식의 다중 심벌 검파는 트렐리스 부호화된 $\pi$/8 shift 8PSK-OFDM에서 향상된 BER 성능을 보여준다. 본 논문에서 제안한 다중 심벌 검파를 이용한 $\pi$/8 shift 8PSK-OFDM은 대역폭과 전력의 효율성을 감소시키지 않고 같은 SNR에서 BER 성능을 향상시킬 수 있다는 것을 보여준다. 또한 제안된 디코더 방식과 알고리듬은 다중 반송파뿐만 아니라 전통적인 단일 반송파 변조에도 사용될 수 있다.

Keywords

References

  1. S. Hara and R. Prasad,  Overview of Multicarrier CDMA,  IEEE Commun. Mag., no. 9, pp. 126-133, Dec. 1997
  2. J. Chuang, L. J. Cimini, Y. Li, B. McNair, N. Sollenberger, H. Zhao, L. Lin, and M. Suzuki, High-speed wireless data access based on combining EDGE with wideband OFDM,  IEEE Communications Magazine, vol. 37, pp. 92-98, November 1999
  3. Y. Li and L. J. Cimini, Bounds on the interchannel interference of OFDM in time-varying impairments,  IEEE Trans. Commun., vol.49, no.3, pp.401-404, March 2001 https://doi.org/10.1109/26.911445
  4. G. Ungerboeck,  Channel coding with multilevel phase signals,  IEEE Trans. Inf. Theory, vol. IT-28, pp. 55-67, Jan. 1982
  5. G. Ungerboeck,  Trellis-coded modulation with redundant signal sets-Part I: Introduction,  IEEE Communications Magazine, vol.25, no. 2, pp. 5-11, Feb. 1987 https://doi.org/10.1109/MCOM.1987.1093542
  6. G. Ungerboeck,  Trellis-coded modulation with redundant signal sets-Part II: State of the art,  IEEE Communications Magazine, vol.25, no. 2, pp.12-21, Feb.1987 https://doi.org/10.1109/MCOM.1987.1093541
  7. J. Yang and K. Feher,  An improved $\pi$/4-QPSK with nonredundant error correction for satellite mobile broadcasting,  IEEE Trans. Broadcasting, vol. 37, no. 1, pp. 9-16, Mar. 1991 https://doi.org/10.1109/11.75122
  8. D. Divsalar and M. K. Simon,  Multiple-symbol differential detection of MPSK,  IEEE Trans. Commun., vol. COM-38, no. 3, pp. 300-308, Mar. 1990 https://doi.org/10.1109/26.48887
  9. D. Divsalar and M. K. Simon, and M. Shahshahani, The performance of trellis-coded MPSK with multiple symbol detection,  IEEE Trans. Commun., vol. COM-38, no. 9, pp. 1391-1403, Sept. 1990 https://doi.org/10.1109/26.61381
  10. T. May, H. Rohling and V. Engels,  Performance Analysis of Viterbi Decoding for 64-DAPSK and 64-QAM modulated OFDM Signals,  IEEE Trans. Commun., vol. 46, no. 2, pp. 182-190, Feb. 1998 https://doi.org/10.1109/26.659477
  11. J. G. Proakis, Digital Communications, McGraw-Hill, 1983
  12. Digital broadcasting systems for telev/ision, sound and data service., European Telecommunications Standard, prETS 300 744 (Draft, version 0.0.3), Apr. 1996