DOI QR코드

DOI QR Code

Nonlinear Analysis of Sloshing in Rectangular Tanks by Perturbation Approach

섭동법을 사용한 사각형 유체저장 탱크의 비선형 유동해석

  • 전영선 (한국원자력연구소 책임기술원) ;
  • 윤정방 (한국과학기술원 건설ㆍ환경공학과)
  • Published : 2002.12.01

Abstract

For nonlinear analysis of sloshing of fluid in rectangular tanks, a new method using the perturbation approach is presented. The results by presented method show good agreement with results in previous study. The importance of nonlinear sloshing analysis is demonstrated by comparing nonlinear behaviors of sloshing in broad and tall tanks with different site conditions. In general, the results by nonlinear analysis are greater than those by linear analysis. Specially, the nonlinear behavior is significant in softer soil site and broad tank. Therefore, nonlinear behavior analysis has to be considered in the design of large liquid storage tanks.

사각형 유체저장 탱크내에 저장되어 있는 유체의 비선형 유동거동을 섭동법을 사용하여 해석하였다. 제시된 방법에 의한 비선형 해석결과는 기존의 연구결과와 잘 일치하였다. 지반특성과 탱크형상에 따른 유체 표면의 비선형 거동 특성을 분석하여 비선형 해석의 중요성을 입증하였다. 유체의 비선형 거동은 토사지반에서 크게 나타나며 특히 Broad Tank에서의 응답은 대단히 크게 나타났다. 일반적으로 유체표면 유동의 비선형 해석결과는 선형해석결과 보다 크게 나타났다. 유체저장탱크의 설계시 선형해석 만으로는 최대응답을 과소평가할 수 있으므로 비선형 해석을 반드시 수행할 필요가 있다.

Keywords

References

  1. Cooper, T. W. “A Study of the performance of petroleum storage tanks during earthquakes, 1933-1995”, NIST GCR 97-720, National Institute of Standards and Technology, 1997, p. 102.
  2. Housner, G., “Dynamic pressure on accelerated fluid containers,” Bulletin of the Seismological Society of America, Vol. 47, 1957, pp. 15-35.
  3. Housner, G., “The dynamic behavior of water tanks,” Bulletin of the Seismological Society of America, Vol. 53, 1963, pp. 381-387.
  4. Ramaswamy, B., Kawahara, M., and Nakayama, T., “Lagrangian finite element method for the analysis of two-dimensional sloshing problems,” International Journal of Numerical Methods in Fluids, Vol. 6, 1986, pp. 659-670. https://doi.org/10.1002/fld.1650060907
  5. Okamoto, T., “Two-dimensional sloshing analysis by lagrangian finite element method,” International Journal of Numerical Methods in Fluids, Vol. 11, 1990, pp. 453-477. https://doi.org/10.1002/fld.1650110502
  6. Ushijima, S., “Three-dimensional arbitrary Lagrangian- Eulerian numerical prediction method for non-linear free surface oscillation,” International Journal of Numerical Methods in Fluids, Vol. 26, 1998, pp. 605-623. https://doi.org/10.1002/(SICI)1097-0363(19980315)26:5<605::AID-FLD668>3.0.CO;2-W
  7. Chen, W., Haroun, M. A., and Liu, F., “Large amplitude liquid sloshing in seismically excited tanks,” Earthquake Engineering and Structural Dynamics, Vol. 25, 1996, pp. 653-669. https://doi.org/10.1002/(SICI)1096-9845(199607)25:7<653::AID-EQE513>3.0.CO;2-H
  8. Chen, B. F. and Chiang, H. W., “Complete 2D and fully nonlinear analysis of ideal fluid in tanks,” Journal of Engineering Mechanics, Vol. 125, 1999, pp. 70-78. https://doi.org/10.1061/(ASCE)0733-9399(1999)125:1(70)
  9. Nakayama, T. and Washizu, K., “The boundary element method applied to the analysis of Two-dimensional nonlinear sloshing problems,” International Journal for Numerical Methods in Engineering, Vol. 17, 1981, pp. 1631-1646. https://doi.org/10.1002/nme.1620171105
  10. Nakayama, T., “A computational method for simulating transient motions of an incompressible inviscid fluid with a free surface,” International Journal of Numerical Methods in Fluids, Vol. 10, 1990, pp. 683-695. https://doi.org/10.1002/fld.1650100606
  11. Liu, Z. and Huang, Y., “A new method for large amplitude sloshing problems,” Journal of Sound and Vibration, Vol. 175, 1994, pp.185-195. https://doi.org/10.1006/jsvi.1994.1322
  12. Faltinsen, O. M., “A nonlinear theory of sloshing in rectangular tanks,” Journal of Ship Research, Vol. 18, 1974, pp. 224-241.
  13. Hayama, S., Aruga, K., and Watanabe, T., “Nonlinear responses of sloshing in rectangular tanks(1st Report, Nonlinear responses of surface elevation),” Bulletin of the Japan Society of Mechanical Engineers, Vol. 26, 1983, pp. 1641-1648. https://doi.org/10.1299/jsme1958.26.1641
  14. Ippen, A. T., Estuary and Coastline Hydrodynamics, McGraw-Hill, New York, 1966, p. 744.