FEAYA RS =EA A7 AHS5F (2002 12)

Memory Performance of Electronic
Dictionary—Based Commercial Workload"

ol & A" ZI 5 ' o] B F,
(Changsik Lee”, Hiecheol Kim', Yongdoo Lee")

2 oF Edle F&£d Ao mel AAAHA g EdAH A E J|HoR s 44 §8§ AZE
dole] Abgol Fsla Atk 2 AFHA =AM JHA AYAIE B F Ut £ =8AME T
A ARAAL FEE 913 MEs HIWHe AAGTY ARAA Wry T o} Eto] de]
B FZE AMEstE 7|E9 HABE g8, B =R AAsE Hae tad odED FERE AIST
o B EFdAE tagd oWEg 7|wre] Mapaldoe] ED-MBT(Electronic Dictionary based on
Multidimensional Binary Tree)d +@ &3 483e & ATEH oo ED-MBT7} 2t 4534
o #3I ARAA B4 AxF AHA @t

Abstract long with the rapid spread of the Intermet, a new class of commercial applications which process
transactions with respect to electronic dictionaries become popular. Typical examples are Intemet search
engines. In this paper, we present a new approach to achieving high performance electronic dictionaries.
Different from the conventional approaches which use Trie data structures for the implementation of
electronic dictionaries, our approach uses multi-dimensional binary trees. In this paper, we present the
implementation of our electronic dictionary ED-MBT(Electronic Dictionary based on Multidimensional Binary
Tree). Exhaustive performance study is also presented to assess the performance impact of ED-MBT on the

real world applications.

1. Introduction

WWW (World Wide Web) over the Internet opens a
new era by making huge amount of information
spreading worldwide be available to global Internet
population. Management and retrieval of the information
bring a new class of commercial application software.
Among
applications usually work as transaction processing with
Tespect irregular data contained HTML
documents.

To support efficient transactions over these irregular
data, documents are indexed by keywords. For normal
Internet search engines, the number of keywords is

them are various search engines. These

to huge

+ This work was supported by 1999 Research Fund from
Daegu University.

* Professor, School of Computer and Comumnunication
Engineering, Taegu University.

usually order of tens of millions due to the huge number
of HTML documents over the Internet. It is thus a
crucial issue to implement a runtime electronic dictionary
which is efficient for keyword searches. In relation with
the huge number of keywords, the efficiency in terms of
memory occupation of the nmtime electronic dictionary is
an additional issue.

The contents of HTML documents over the Internet
changes very frequently. Recent investigation suggests
that over 10% of HIML documents are either discarded
or modified per weeks. Moreover new documents keep
upload over the Internet. These frequent changes enforce
that the contents of electronic dictionaries should also be
kept updated. Indeed, the Intemnet search engines update
periodically its database anew by gathering HIML
documents over the Internet. This update procedures are
mostly made manually by system administrators.
Somehow, it is necessary to make the procedure be done

-39 -

automatically. This automatic procedure, which we will
call dynamic indexing, modifies the runtime electronic
dictionary and its indexed documents dynamically while
search engines provide their services. To support dynamic
indexing, it is essential to make efficient update, e.g,
addition and deletion of keywords, of the mmntime
electronic dictionary. Therefore, it is another crucial issue
for electronic dictionaries to support highly efficient
dynamic update.

Even though the implementation of electronic
dictionaries over the Intemet applications is challenging
with raising performance, memory
flexibility issues that we point out earlier, few studies
are made. Most current applications just use schemes
designed for document management systems which require

efficiency and

e,
User L Text
Dictionary File

query

Figure 1. The organization of a Internet search
engine

usually small or medium scale electronic dictionaries.

In our research, we explore performance, memory
efficiency, and flexibility issues of electronic dictionaries
for the Intemmet applications. To address the issues, we
developed a new scheme to implement electronic
dictionaries. It uses multidimensional binary tree to
represent the runtime electronic dictionaries. The
electronic dictionaries thus designed is called ED-MBT
(Electronic Dictionary based on Multi-dimensional Binary
Tree). This paper presents the theoretic aspect and
performance of ED-MBT implemented in a commercial
search engine.

The rest of the paper is organized as follows. In
section 1, existing schemes for electronic dictionaries are

Example word
I acacia

habitus

hackney

Figure 2. An example Trie-based electronic dictionary

presented as background. In section 2, ED-MBT is
presented. In section 3, the result of the performance
evaluation is presented. Finally, in section 4, the
concluding remarks and future research issues are offered.

2. Background

Transaction processing of Intemmet applications are
made over varous forms of databases. Search engines,
for example, collect HTML documents over the Internet
and extract keywords from them. They then construct a
database which contains the contents of all the
documents indexed by keywords. Based on the database,
they provide search services for the general Internet
population[7]. The system components of Internet search
engines are depicted in Figure 1

In services of Internet search engines, a user query is
usually made by keywords. Given a keyword, the system
searches the electronic dictionary for the keyword.
Provided the keyword is a legal one, some information is
retrieved from the electronic dictionary for the keyword.
Using the information, the system locates the documents
containing the keyword and retumns them to the user.

This procedure indicates that transactions triggered by
user queries are made with respect to the electronic
dictionary. As pointed out earlier, the number of
keywords used in the Internet search engine is tens of
millions because nouns such as people’s name must be
accepted as keywords. Therefore, electronic dictionaries in
such applications have critical impact on the performance
of the Internet search engine.

—40 -

Previously several schemes are used to build electronic
dictionaries. The first scheme uses B+ trees to represent
dictionaries. In this scheme, a node represents each
keyword. The key value used for a node is calculated by
using the characters of its keyword. This scheme is
conceptually very simple and provides highly flexible
deletion and addition of keywords. Moreover, storing the
dictionaries in file, which is normally required for a
system cold start is also efficient due to its inherent
feature of B+ trees{3,3].

In this scheme the time complexity of each search
operations of Olog n), where n is the number of
keywords. For the internet search engine, as n is order
of ten millions, the value of O(log n) becomes very high
compared with other schemes which will be discussed
shortly. However, the critical problem is that this scheme
suffers intolerably poor memory efficiency because the
number of memory words allocated per key must be the
same one required for the largest keyword in terms of
character counts. This drawback makes the scheme
practically obsolete. In a search engine, a user query
contains normally a string of characters and thus it is
required to extract the keyword of maximal size from
the string by some syntactic analysis. Normally, this
analysis contains more than one dictionary searches for
some substrings. With B+ tree schemes, these searches
are very inefficient becausec each search is to made
independently with respect to the whole B+tree[9,10].

The second scheme uses hash tables to represent
dictionaries. In this scheme, a hash value calculated for a
given keyword by using a hash function determines an
entry in the hash table. This scheme is very efficient in
terms of memory usages because only the hash table is
required to be resident in memory. It also provides high
performance in locating a keyword to its corresponding
entry due to the inherent feature of the hash data
struction[4].

However, it has critical problems in terms of
performance and flexibility. First, as keyword has of
variable character length with the combination of
characters of a given character set (e.g., ASCI
alphanumeric code) high frequency of hash collisions is
indispensable in electronic dictionaries. Because it is

entailed to make linear search over the list of colliding
elements, collision processing is very costly even though
the colliding elements are resident in memory. Second, is
not flexible to make addition or deletion of a keyword
due to the side effect related with making a permanent
copy of colliding entres in files. That is, because the
number of colliding entries are of variable length, the
file management to store those entries is extremely
inefficient. In the worst case, the whole file must be
rebuild[10].

The third scheme uses the concepts of trie data
structures (Figure 2). In this scheme, a level in the tree
is associated with the character position in
keywords[1,2,6]. For example, the root node is associates
with the first character position of the keywords. Each
node contains <[char, link}]+> where char is the field for
a character and link is a field for a child node. The
characters in the child node are candidate characters that
can follow the partial word formed along the path from
root to the node containing char. A number of variation
are found for this trie-based implementation of electronic
dictionaries.

This scheme is featured with an incremental character
by character search from the first character. This
incremental search is beneficial during the resolution of
keyword generation which extracts a maximally matching
keyword from a character string; in the previous two
schemes, we need to searches repetitively for each
substring.

Overall, this scheme is very efficient. However, this
problem which degrades the
performance due to the requirement of the linear search
over possible candidates inside a node. On the
implementation side, because the amount of memory
words required for each node is different, it requires a
very complex data structure{8,10]. Furthermore, it has a
critical problem in the addition and deletion of a
character associated with each node. Therefore, dynamic
update is not virtually possible without experiencing
intolerable overhead.

scheme retains a

—-4] -

3. Electronic dictionary based on mutti—
dimensional binary trees.

The survey of previous schemes allow us to bring the
following requirement for the electronic dictionaries. First,
the performance of a keyword search must be high for
Internet applications such as search engines. Second, the
dictionary must provide character-wise incremental search
to efficiently support keyword extraction from a character
string because keyword extraction is an essential step in
the front of query processing. Third, the memory
requirement must be small. Finally, the update of
keywords for both the nmtime data structure and disk
files must be supported without incurring high overhead.
Assessed by each requirement, none of the previous three
schemes satisfy all the four requirements.

Table 1. Example keyword for ED-MBT

halfmast, halfpenny, halftone, hammer, hand, handrail,
handwok, handwriting, harbor, harvard, harvesting,
harvestmoon, harvest, hawk :

Subject to the above four requirements, we thus
developed a new scheme by taking multidimensional tree
as the representation of electronic dictionaries. The
electronic dictionary thus obtained is called ED-MBT
(Electronic dictionary based on multidimensional binary
trees).

ED-MBT is represented by a tree in which each node
has a key value and three child nodes. Formally, let its
content be <key, left, center, right>, where key is the
key value, left is a field for the left child node, center
is a field for the center node, and right is a field for
the right child node.

In ED-MBT, the parent node, left child and right
child nodes have the same semantics as in normal binary
trees. On the other hand, the newly introduced center
node has semantics associated with characters following
in the next character position of a keyword. Removing
edges comnecting a parent node to its center node, a set
of disjoint binary trees remain. It is defined that each
binary tree is a data structure for the set of characters
which are in the same character position in keywords.

Given a parent node which is associated with kth

character position of keywords, the subtree whose root
node is the center node represents the substrings which
can follow in keywords the character of the parent node.
In the subtree, the binary tree formed by removing all
the subtrees of each center node is thus a data structure
for the set of characters which can appear just after the
character of the parent node, i.., in the (k+1)th character

Figure 3. An example ED-MBT

position of keywords.

In electronic dictionaries, each character in a given
code system can appear as the first character of
keywords. In a normal MBT, the binary tree for this
first position must be a binary tree whose root is the
root of the MBT. But, in ED-MBT, as the location of a
character can usually be indexed by its code when the
characters are stored in an array, the entire characters in
the code is represented by a linear array, which will be
called the root array. This help avoid binary searches for
the first character in keywords.

Figure 3 shows an ED-MBT for the set of keywords
in Table 1. In the ED-MBT, two ASCII characters are
assigned to a key. The first key of the keywords is ha
and is represented as an element in the root array. The
second level keys, {If, mm, nd, ™, 1rv, wk}], is
represented by a binary tree. For each node n in the
binary tree, the next level keys are formed in another
binary tree whose root is the center child of node n. For
example, for node m with key nd, each element of the
set of keys {ra, wo, wr} is defined as a candidate for
the next level key and the set is represented as a binary
tree whose root is connected as a center child of node
m

Normally, each leaf node contains the last key of a

42

keyword. For example, node with key st contains the last
key for keyword halfmast. In ED-MBT, if a keyword kil
is a prefix of another keyword k2, the node for the last

Flag bit insert ‘/@ e %3?;&
uzv 3 g

Flag bit delet ~

-
b
2

3,

Figure 4. Insertion and deletion in ED-MBT

key of k1 has a center child to represent the remaining
character string of k2, and is thus not a leaf node. For
example, non-leaf node with key nd is the last node for
keyword hand which is a prefix of keyword handworker.
Therefore, in ED-MBT the non-leaf node for key nd has
an information to indicate the resolution of keyword
hand. The information is indicated by solid cirle in
Figure 3.

Search a keyword in ED-MBT is incremental. For a
first level key, the code value is used an index to the
root array. Using the pointer contained in the indexed
element of the root array, the root of the binary tree is
identified. For the second level key, the binary tree is
searched using normal binary trec search algorithms.
Once a node is found for the second key, we take the
center child node as the binary tree for the third level
key. By repeating the procedure, we can search a
keyword or resolve that the input keyword is not a legal
keyword registered in the dictionary. Insertion and
deletion of a keyword is straightforward because each
level is a complete binary tree. Instead of a formal
algorithm, we provide an example in Figure 3. The
example shows insertion of hawker into the ED-MBT in
Figure 4. Alto it shows insertion of half. The detailed
description is not exposed in this paper due to space

limitation.

Assessed from the requirements of electronic dictionary
discussed earlier, ED-MBT satisfies all the requirements.
First, ED-MBT offers a great opportunity for high
performance in keyword searches because of its binary
search without any linear searches. Second, ED-MBT
provides character-wise incremental search to efficiently
support keyword extraction. Third, the memory
requirement is small because multidimensional trees are
efficiently implemented by arrays of structures without
fragmentations. Finally, benefiting from the characteristics
of binary trees, ED-MBT efficiently support the update
of keywords for both the nuntime data structure and disk
files.

4. Performance evaluation

To evaluate the performance of searches, we conduct
experiments. First, given a set of test dictionaries, we
measure the amount of memory required to build
electronic dictionaries respectively for ED-MBT and
ED-Trie (Electronic Dictionary based on Trie data
structures). Subsequently, given a set of test input
keywords, we measure respectively the total search time
with respective to ED-MBT and ED-Tre dictionaries.
Second, to analyze the characteristics of memory
behavior of ED-MBT and ED-Trie on the state of the
art computer systems, we measure the memory
performance on a simulated machine.

4.1. Evaluation methodology

The performance evaluation is made with focus on the
memory requirement and the performance of search
operations. The performance of ED-MBT is compared
with ED-Trie. In the implementations, ED-MBT and
ED-Trie are used as shown respectively Figure 3 and
Figure 2.

To make the evaluation realistic, we use the dictionary
used in the Kachi Internet search engine which provides
a commercial service for Korean Internet population.
Using 260 million keywords of the Kachi dictionary, we
made 9 kinds of test dictionaries whose keyword size are

—43 —

respectively 60K, 300K, 600K, 900K, 1200K, 1500K,
1800K, 2100K, and 2400K. The 60K dictionary contains
nouns in Korean dictionaries. For the remaining test
dictionaries, keywords are selected evenly from entire
260 million keywords, not extracting some part. The
average characters per keyword is about 4.80. Table 2
shows the keyword size, file size and average character
size per keyword respectively for each of the above nine
test dictionaries.

Table 2. Comparison of memory requirement

Word count Dic size | Average | METsee (| Trie Sixe
(Mbye) | syllabie || (vbyw) (| (Mwes)
Dic_] 62,128 0.40 3.42
| Dic 2] 364,6% 3.17 4.56
| Dic 3] 662074 6.10 4.83
Dic_4] 962,070 9.03 4.92
Dic 5] 1.262,069 12.00 498
| D
Dic 6] 1,562,066 15.16 5.08
| Dic_7| 1.862,062 18.23 5.13
Dic 8] 2362060 | 2137
Dic 9] 2462059 | 24.52

Table 3. MBT & Trie search time

ED . MBT Search Time ED-TraSearch Time | i
User | Sysem | Tois User | Systen | Torat MBT
Dic_1 2379 066 | 2445 § 53.53] 069 | 5422]
Dic 2 2853 0.55 | 2008 J 9250 1.06 | 93586
Dic 3 3266} 0.52 | 338 J119.65] 1.14 [12079
Dic_4 33741 074 | 3448 §141.33) 1,37 § 14270
Dic_5 3401] 077 | 3568 J154.09] 1.69 | 15578
Dic_6 3567 0.78 | 3645 B167.96] 1.34 | 1693

Dic 7 | 3663] 094 | 3755 J17437] 136 [17873
Dic_§ 37241 086 | 3010 Ji86.68] 136
Dic_9 37181 0.83 | 3801 J195.68] 1.

Dic Name

In addition, to obtain keywords used as the input for
the keyword searches over test dictionaries, we generate
traces of queries from the commercial services of the
Kachi Intenet search engine. The number of input
keywords thus obtained is 8,410,000. The average
number of characters per input keyword is 3.43. The
input keywords are used in evaluation the search time.

4.2. Memory usage

Based on the C programs implementing ED-MBT and
ED-Trie, we collect the total mumtime memory size
required to represent for each of 9 dictionaries. Table 2

shows the result. For each dictionary, it shows the
number of keys and the memory size to implement the
dictionary. On average, bytes per key is about 26 for
ED-Trie and 16 for ED-MBT. This indicates that in the
representation of a key ED-MBT is more efficient by
62% ((26-16)/16*100) with respect to ED-Trie. The
total amount of memory required to represent a
dictionary respectively for ED-MBT and ED-Trie is
shown in Table 2. The table shows that on average
ED-MBT is more efficient in its memory requirement by
about 56 percent than ED-Trie.

Figure 5. RSIM multprocessor simulation model

4.3. Search performance

To evaluate the search performance, we use the set of
input keywords whose keyword size is 8.4 million. The
evaluation is made by measuring the execution time to
search the entire input keywords sequentially respectively
for the C implementations of ED-MBT and ED-Trie on
Sun UltraSparc workstation. On each implementation, the
execution time is measured for each of 9 dictionaries.
The total execution for searching 8.4 million test
keywords is measured for the system time and the user
time (Table 3).

Overall, ED-MBT is very faster than ED-Trie per
keyword search. Table 3 shows a graph which shows the
performance between ED-MBT with ED-Ttie in terms of
search time. For Dict-1, ED-MBT is 2.22 times faster
than ED-Trie and for Dict-9 ED-MBT is 5.18 times
faster. For all nine dictionaries, on everary the speedup
of keywad searches in ED-MBT over in ED-Trie is 4.10.

As we use the same input keywords for all the 9
different dictionaries, the result in Table 4 reveals the
scalability of each scheme with respect to the dictionary

— 44 —

size. According to the table, in ED-MBT the search time
per keyword is not affected much by the size of the
dictionary. On the other hand, in ED-Trie the search
time per keyword increases almost linearly as the size of
the dictionary becomes larger. Indeed, the ratio of Dict-9
to Dict-1 in term of search time (Dict-9/Dict-1) is 3.65
in ED-MBT, while it is 1.6 in ED-Trie. This indicates
that ED-MBT is much suited for large-scale dictioparies
due to its higher scalability over dictionary size.

Overall, the table shows that ED-MBT is superior to
ED-Trie both for scalability over the size of the
dictionary as well as search performance.

Table 4. Cache hit-rate and execution cycles

Assaciae | Line ED-MBT ED-Trie

size § hit mate (%1 Cycles it rate 1% Cycles
16 b] 4.iget0 9341 1.13e+07
32 Fopagy] 411406 91.78 1.21e+07
T-way o8 T oagh | 410c.06 9522 T16c 707
128 A.11e+06 [97 1.16e+07
16 £.12¢+06 93 99 {.12e407
32 4.08e +0 92235 1.20e+07
d-way [7eq 4.060+06 95.54 11507
4.05+06 0791 11507
4.3 1206 .08 1.1ie+07
) 32 407106 9147 1.9+ 07
Beway 6 F 637 | 30%.06 9561 115507
128 96.80 4.02¢506 98,0 1.14e+07

4.4. Memory performance

Modemn computer systems provide a npumber of
hardware supports to get optimizations which exploit the
execution behaviors of applications. One of important
classes of them is to minimize memory latency. The
hardware supports are based on the analysis of memory
behaviors such as locality and access patterns of memory
operations. These analyses are mostly focused on
scientific applications and thus their memory behaviors
are relatively well understood. On the other hand, only a
few studies are made for analyzing memory behaviors of
commercial workload such as tramsaction processing with
respect to databases{12,13].
directory-based transaction processing no previous studies

Furthermore, for

are found to analyze the memory behaviors. It is quite
sure that algorithmic excellence of ED-MBT contributes
to higher performance of ED-MBT than ED-Trie. But we
still need to understand the memory behavior of
ED-MBT to benefit from the architectural optimization

such as cache memories.

In this experiment, we memory
performance of electronic dictionaries. The study is based
software simulating of keyword searches
respectively for ED-MBT and ED-Tre. Through
simulating, we gather the cache performance respectively

explore the

on the

for various configurations. The cache performance is
compared between ED-MBT and ED-Trie.

2way
Sway
—Q— iy

Ty

93%
2wty

—O—
%J = tway
o1 —O— iway

16 32 64 128 (byte)

Figure 6. Cache hit ratio

a17 1Cyche onit : E + 06)

415 =
Xy

4.13
4.1
4.09
4.07
4.08
4.03
4.01

16 32 64 128 { byte)

Figure 7. ED-MBT execution cycles

The software simulator that we use is RSIM (Rice
for ILP Multiprocessors){il]. In our
experiment, we use the single processor configuration of
RSIM, while this simulator is developed to simulate
multiprocessors. RSIM provides a means for very

Simulator

accurate measurements of modem processors because its
processor model is based on modern MIPS R10000
processor architectures (Figure 5).

In this experiment, we use the input set which
consists of 10,000 keywords. The size is far smaller than
the previous experiment to evaluate the search time. The
reason for using smaller input keywords is that for large

—45 -

input keywords the simulation takes too long to manage
the simulation work. However, we believe that the result
obtained for 10,000 keywords still provide sufficient
information for the analysis of the cache performance of
ED-MBT and ED-Trie. Indeed, through some
experiments we see that larger input sizes than 10,000
keywords shows only negligible difference in the
characteristics of the cache behavior both in ED-MBT
and ED-Trie.

Given 256K bytes of cache, the evaluation is made
with respect to two cache parameters: cache associativity,
and cache line size. In addition, the number of cycles to
execute 10,000 keyword searches is measured. The result
is shown in Table 4.

Figure 6 shows the cache performance. In terms of
the cache associativity, both ED-MBT and ED-Trie show
some expected characteristics in their hit ratios. That is,
as the associativity becomes larger, the hit ratio increases
for both schemes. As the difference between cache hit
ratios are below 1 percent, the cache associativity does
not make any noticeable impact on the cache
performance. In terms of the cache line size, ED-MBT
shows an expected results. That is, as the cache line size
increase, cache hit value increases. On the other hand, in
ED-Tric the cache hit ratio drops when the line size is
32 bytes. In ED-Trie, the memory words tequired to
implement a key is 26 bytes. The difference between the
node size of 26 bytes and the line size of 32 bytes
causes more fragmentation than in the other
configurations of the line size. In terms of cache hit
ratios, ED-MBT shows higher value than ED-Trie except
when the line size 128. A node in ED-Trie contains
usually more than one key and an aray of structure is
used for the node. Given a set of candidate keys, when
they are implemented in a array and the cache line size
becomes larger, the locality tends to be higher than when
they are implemented by binary trees. This is, therefore,
the reason for lower hit ratio of ED-MBT when the line
size is 128 bytes than that of ED-Trie. However, as a
larger cache line causes larger block transfer time, the
higher hit rate of ED-Trie for larger cache lines do mot
directly reflected in the execution performance. This point
will be explained shortly.

To assess the cache performance from the view point
of the cache line size, ED-MBT shows locality which
are insensitive to the cache line sizes. This property can
allow ED-MBT to benefit more from a wide range of
configurations in the cache line than ED-Trie.

Figure 7 and 8 shows the execution cycles for 10,000
keyword searches respectively for ED-MBT and ED-Trie.
Comparing with ED-MBT and ED-Trie, we see that the
execution times obtained from simulation conform to the
execution time obtained from direct execution in section
4.3. In ED-MBT, the execution cycles mostly decrease as
the bock size decrease except when the cache uses
two-way set associative mapping with the line size of
128 bytes. This indicates that up to 128 bytes block size
the higher cache hit ratio in ED-MBT directly contributes
to higher execution. performance. On the other hand,
according to the graph in Figure 8. the high cache hit
ratio of ED-Trie obtained when the line size is 128
bytes does not contribute to the execution performance
due to the large cost of block transfers between the
cache and the main memory.

{Cycle unit : E + 07

1.24

~O—2way
1.22 Bty

1.20 |
1.18 |-
1.16 R
1.14
112
1.10
1.08

16 32 64 128 (byte)

Figure 8. ED-Trie execution cycles

5. Conclusions

This paper presents a new scheme, ED-MBT, to build
electronic dictionary based on multidimensional binary
trees. Compared with the previous schemes, our ED-MBT
is excellent by providing incremental searches and highly
efficient dynamic update of runtime data structures. The
performance of ED-MBT is very scalable with respect to
the size of dictionaries which are usually of huge size
for dictionary-based Internet applications such as Internet

— 46 —

search engines. In terms of raw performance, the average
search time per keyword of ED-MBT is very smaller
than Trie-based directories by 22 times for 60k
dictionaries and by 5.18 times for 240k dictionaries. The
performance analysis shows that ED-MBT retains both
(1) algorithmic enhancement and (2) higher locality of
access patterns

memory over previous schemes,

particularly Trie-based approaches.

Reference

(11 J . |. Ace. "An Efficient Digital search algorithm by
using a Double — Array Structure”, |IEEE Transactions on
SW Eng. Vol. 15. No. 9, pp. 1066-1077. 1989.

[2] J. I. Aoe, K Morimoto, "An Efficient Implementation of
Trie Structures”, SW Proc. and Bxp. Vol. 22. No. 9. pp.
695-721. 1992.

[3] D. Comer, "The Ubiquitous B-Tree”, ACM Computing
Surveys, Vol. 11, No. 2, pp. 121-137, 1979.

[4] R J. Enbody, H. C. Du, “Dynamic Hashing Schemes”,
ACM Computing Surveys, Vol.20, No.2, pp. 85-113, 1988.

(5] Wiliam B. Frakes, Richard Baeza-Yates, “Information
Retrieval Data Struct & Algorithms”, PTR Prentice-Hall,
1992.

[6] Edward Fredkin, Boit Beranek and Newman, “Trie
Memory”, Communications of the ACM, Vo3 pp.
490-499, 1960.

[7] Jong-Back Kang, Sung-Hun Kim, Won-Kyo Jeong,
Yong-Doo Lee, "An Indexing Algorithm for Korean Words
using DFAs”, Proceedings of The 6nd Korea Information
Processing Society, Vol.3, No.2, pp1014-1019, 1996.

[8] Cheol-Su Kim, Woo-jeong Bae, Yong-seok Lee,
Jun-ichi Aoe, "Construction of Electronic Dictionary Using
Double-array Trie Structure”, Joumal of Korea Information
Science Society, Vol.23, No.1, pp.85-94, January, 1996.

[9] D. Knuth, "The At of Programming”, Vol. 3, Sorting
and Searching, Addison-Wesley Publishing Co. Inc. 1973,

(100 Seung-Sun Lee, Ju-Won Song, Wan-Sup Cho,
Kyu-Young Whang, Ki-Sun Choi, "A Database index
Structure for the Korean Electronic Dictionary”, Joumal of
Korea Information Science Society, Vol.22, No.1, pp.3-12,
January, 1995

[11] Viay S. Pai, Parthasarathy Ranganathan, Sarita V.
Adve, "RSIM An Execution-Driven Simdlator for
ILP-Based Shared-Memory Multiprocessors and
Uniprocessors”, In Proceeding of the 3rd Workshop on
Computer Architecture Education, February, 1997.

[12] Trancoso, P., Lamiba-Pey, J., Zhang, Z and Torrelas,
J, The Memory Performance of DSS Commercial
Workloads in Shared-Memory Multiprocessors, Proc. of
23rd Ann. Int. Sympasium on Computer Architecture, 1996.

[13] Thakkar, Shreekant and Sweiger, M, Performance of
an OLTP Application on Symmetry Multiprocessor System,
Proc. of the 1990 Int. Computer Architecture Symposium.

o] & A} (Chang-sik Lee)

1975 : kyungpook University
(Electronic Eng. B.S.)

1979 : kyungpook University
(Computer Eng. M.S.)

1999 : Konkuk University
(Electronic Eng. Ph.D.)

1981 ~ : Daegu University, Professor
Interest: Microwave, Digital communication

Y & # (Hicheol Kim)

1983 : Yonsei University

. (Electronic Eng. B.S.)

i, "~ 1991 : University of Southern

" §,| California (Computer Eng. MS)
1996 : University of Southern California
(Computer Eng. Ph.D.)

1997 ~ : Daegu University, Assistant Professor
Interest : GRID, Computer Architecture, Parallel
Pr ocessing, Cor_npiler

~47 -

ol 8 5 (Yongdoo Lee)

1975 : Hankuk Aviation
University (Communication
Eng. BS))

1982 : Yeungnam University
(Computer Eng. MS)

1995 : Hankuk Aviation University (Computer Eng.

PhD)
1982 ~ : Daegu University, Professor
Interest : GRID, Computer Architecture

— 48 —

