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Abstract Many important scientific and engineering problems require the computation of a small
number of eigenvalues for large nonsymmetric matrices. The biorthogonal Lanczos method is one of
the methods to solve that problem, but it faces serious breakdown problems. In this paper, we
introduce a modified biorthogonal Lanczos method to find a few eigenvalues of a large sparse
nonsymmetric matrix. The proposed method generates reduction matrices that are similar to those
generated by the standard biorthogonal Lanczos method. We prove that the breakdown conditions of
our method are less stringent than the standard method. We then implement the modified biorthogonal

Lanczos method on the CRAY machine and discuss the decreased breakdown conditions.

I . Introduction

The most popular way to obtain all the
eigenvalues of a #X#n matrix A is to use the

QR algorithm. As the order # increases above
100 the QR algorithm becomes less and less
attractive, especially if only a few of the
eigenvalues must be computed. Many important
scientific and engineering problems require the
computation of a small number of eigenvalues
for large sparse matrices. Earlier work on
Krylov methods for nonsymmetric eigenproblems

focussed on variants of Amoldi’s method(1].
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One difficulty in the use of the Amoldi's
procedure is that it provides only for the
computation of the right eigenvectors. Ruhe(4]
considered the extension of the one-sided Arnoldi
procedure to the 2-sided Amoldi procedure. This
orthogonal sets of
vectors, essentially independently.

extension generates two

The biorthogonal Lanczos method generates
two sets of vectors that are biorthogonal, and a

sequence of nonsymmetric but tridiagonal
Lanczos matrices [1]l. We refer to these
tridiagonal matrices as Lanczos reduction

matrices. This Lanczos procedure has modest
storage requirements and we can therefore use
it for very large matrices. In such procedures
the eigenvalue and eigenvector computations are
preformed separately. We find eigenvalues of the
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Lanczos reduction matrices and then use them
as approximations to the extreme eigenvalues of
A.

The biorthogonal Lanczos method was neglected
for a long time because it faces serious breakdown
problems. The problem of building the Lanczos
vectors in the nonsymmetric case was addressed
by Parlett and Taylor [3), which suggests a
Lookahead Lanczos algorithm that can handle
possible breakdowns.

In this paper, we introduce a modified
method. Although the
computational work and storage sizes slightly

biorthogonal Lanczos

are increased in comparison with the standard
one, the modified method has fewer breakdown
conditions which heals to be improved for the
computations of eigenvalues.

In section 2 we review the biorthogonal
Lanczos method. In section 3 we develop the
modified biorthogonal Lanczos method, and in
section 4, 5 we discuss the decreased breakdown
conditions of the modified method.

II. The Biorthogonal Lanczos method

LetA be a

There are many tridiagonal matrices similar to

nXn nonsymmetric matrix.

A and T, is one of them. Then for some

matrix ,=( q;,..., @), we have
Q. 'AQ,=T, 2.1)

Let P,=(p,,..., p,) and replace (2.1) by

two separate relations,

pP,TQ,=1
P,TAQ,= T,

By equating columns on each side of

AQ,~Q,T, ad P,"A=T, P,”
in the natural increasing order, we obtain the

following equations: For each j{n,

AQ,'= Q,’ T,+ Y; e,»T
PjTA= Tj PjT+ s,-Te,»

where 7; s; are residual vectors. A and
two initial vectors p;, ¢q; essentially determine
all the other elements of P; @, and T,
In this method, the right space @; is a
Krylov subspace
Q=spanl q,,A q,, ...
and the left space P; is a Krylov subspace

L, (AT p]

’ Ai_l 41]

Pi=spanl p,, AT py,...
with P;T Q;= I,

The eigenvalues of the biorthogonal Lanczos
matrices T'; are called Ritz values of A.

For many matrices and for relatively small j,
compared to #, several of the extreme eigenvalues
of A are well approximated by the corresponding
Ritz values. The right Ritz vector @,y (=2)
obtained from a right eigenvector y of a given

T; is an approximation to a corresponding
right eigenvector of A, and the left Ritz vector

P ;9 (=2) obtained from a left eigenvector §
of a given T; is an approximation to a

corresponding left eigenvector of A. A simpler
version of biorthogonal Lanczos algorithm can
be formulated as follows:
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Algorithm 2.1 Biorthogonal Lanczos Algorithm

Set gq=0, p¢=0 and By=0, 7,=0
Choose ¢, and p; with ( p;, ¢;)=1.
For 7=1 until Convergence Do

1. Compute and store A q;, b; TA

2. a;=(Agq;, ;)

3. r=Ad4;,~ vi14j-17 @, 4,

s;’= p;TA=B;1 P~ a; b,
4. B, ri=C(r;, s))
5 qjn= 7;/ B;

T

pir1= sl 7;
EndFor

Note that  p; TA= AT p,; requires multiplication
by the transpose of A. Let T'; be the tridiagonal

matrix at step J

a, 7
By ay 72
Ti'__ . ] []
Yi-1
Bi-1 a;

For each j, the nonsymmetric Lanczos matrix
T j is the biorthogonal projection of A onto the
Krylov subspaces spanned by the @; and P;
The coefficients 8; and y; in T; are not
uniquely defined in step 4 of algorithm 2.1. The
@7 and P, are biorthogonal with any choices
which equation

of B, 7; satisfy

B; y;=(7;, s;). One possible choice is
B,=VI1Cr;, sp| and y;=sign( r;, s;) B;
[3]. Observe that the continuation of this
recursion requires that { 7, s;)#0 for any 7.

The ( 7;, s;)=0  causes the algorithm to

break down. That is why the biorthogonal
Lanczos method has not been widely used. This
problem does

not occur in the symmetric

Lanczos method [2].

II. Modified biorthogonal Lanczos method

Let us denote by k the iteration number in
the modified biorthogonal Lanczos method. We
will denote by v and w the modified
biorthogonal Lanczos vectors instead of p and ¢

of the standard biorthogonal Lanczos method.

Given the vectors v &, ¥ 2,...,v  we use V,

(each of dimension ) to denote matrix of

{v )e, v %, vy U BN Given the vectors

whwi .., w, we use W, (each of
dimension »n) to  denote  matrix  of
{whw? .. wi. The subspace V, is

spanned by { v 5, Av ) ..., A Vol so that

V. is made to be orthogonal to the
subspaces Wi-1, Wiy, ..., W),. Also the
subspace W, is spanned by

{twk ATwl, ..., (AT)s_lwi) so that

W, is made to be orthogonal to the

V/e——l: V};_z,..., V1~

subspaces

Let sXs matrix W,  V, be nonsingular.

Then LU decomposition with row exchanging
R . T T
can be applied to the matrix W, V, as

follows:

Hk( WkT Vk)= Lk* Uk,

where [T, is a permutation matrix, L is

an sXs lower triangular matrix and Uy, is an
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$X s upper triangular matrix.

Remark 3.1

I /7\‘,- is a tridiagonal matrix generated by
the standard block Lanczos algorithm and
T,= U, ! /Tj U, where j=s*k and

U,,=dzag( Ul, Ug,..., U/,), then T,,

0 « - . -
becomes a nonsymmetric matrix similar to T i

as follows:

G, E,
F, G; E,
[ ]

Tk=
E,
Fe Gy

where G; and E; are sxs matrices. Here F;

is an s$XS$ matrix whose only nonzero element

at location (1,s).

Also the matrix L k—l /T,- L,  where

Lk=diag( Ll’ Lz,..., Lk) and j=S*k,

becomes the same type of a nonsymmetric

matrix T
We demonstrate this for the special case of
s=3, k=3. The general case can be shown in a

similar way.
* ok ok
* ok
*
_ *x k%
U3179U3= * %k
*
* k%
* ok
*
* ok
* ok k
* ok ok
* ok ok
X * k%
* ok ok
* ok K
* ok ok
* %

* ok X
* %
*
* ok ok
x * %
*
* ok ok
* %
*
* ok ok
* %
*
* % ok
= * %k
*
* ok ok
* ok
*
* K ok
* * ¥
* ok ok % X
* ok k X
X * Kk ok
* k ok ¥ %
* x kX
* ¥ ok
* %

= | kokk | k%%
| kok | kxx

[ * | k%%

| |k ok %

L | ‘ * k-

We now provide the defining equations of the
s-step biorthognal Lanczos method in the
following form.

Algorithm 3.1 Modified biorthogonal Lanczos
algorithm

V0=0v W0=01
Vi=lviAvi., A v]]
wi=lwi, ATwi, ..., ( AD T wl)
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[ 5,1=0 [ b,'1=0, l<i<s

For k=1 until Convergence Do
Select [ @ ,]=0,[ b ,1=0,1<i<5,
to orthogonalize —_V-;, against —W_l.
Also select [ a5'1=0, [ —b—k_—li]=0,
1<i<s
to orthogonalize _W; against —?/:.
These give

1 . s _
Vi1 =AU Vi-1b 4y Vea

1 _ T s 5
Wi1=A wi— Wiy by — Wi a,

Select [ ¢ /], 2<j<s,
to orthogonalize { Av hyy, ..., A o L))
against _W;, which gives
vin= A7y be1— Vit 4
Select [ ~ #4], 2<j<s
to orthogonalize

-1
(ATwhL ..., (A ' wh
against V', which gives
) - o .
whn= (AD 7 wia— W, t
for j=2,...,s.
EndFor

Let A be an #X#n nonsymmetric matrix and
Vk::{ Vl’ Vz, veey Vk ),

Wk—_'( er Wz, aeey Wk )
In the s-step biorthogonal Lanczos method, the

Ritz values of A in V, are the eigenvalues
Ay of T, The right Ritz vectors are vectors
Vi x, (= z,), where the right eigenvector

x; of T are associated with the A, and

the left Ritz vectors are vectors

W, xx(= z,), where the left eigenvector

—~

x4 of T, are associated with the A,

IV. Decreasing the breakdown condition

It can be easily shown that when algorithm

2.1 does not break down for a null inner product
( 7j, s;), then the vectors ¢j;; and pj4q
satisfy the biorthonormality property. Although
there are various ways of choosing £; 7;
satisfying 8; 7;=( 7;, s;), it is of interest to

notice that the product will not depend upon
which choice is taken, because

2l sl

gl gl = Bi 7,
7T
A Cr sl
g all 12l = —=6C 7, 5),

where 6( 7;, s;) denotes the angle between the
vectors 7; and s; [5]. This angle ( 7;, s;)

is a functionA, g, p; apare from a

normalizing factor. This angle can be equal to
72,

interesting to note that »; and s; can be

causing the algorithm to stop. It is

written as 7;= @;(A) q,,
s;j= @,( Ap) p, where @; denotes polyn-
omial of degree j. Different choices of the B;

and 7; correspond to different scaling of the
Lanczos vectors. Hence, any resulting tridiagonal
matrices 7; have the same eigenvalues. The

biorthogonal Lanczos algorithm can be regarded
as the two sided Gram-Schmidt process applied
to the column of the special matrices

R= Rj=[ a1,A q,, Al Gyseees A1 (11]
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i—1
L=Lj=[P1,ATp],...,(AT)] pl]
The R and L matrices are called Krylov
matrices. Note that the (7,7) element of L TR

is( 21T ATHIAT! q)), so

L'"R=M=M(p,, a),

_ T a4 i+i
where m 4y 1= b1 A7 gy

The matrix M is called the moment matrix of
( p1. g,) with respect to the matrix A. The
following proposition gives breakdown conditions
of the biorthogonal Lanczos method in terms of

the nonsingularity of the moment matrices M ;.

This proposition is proven in [3].

biorthogonal Lanczos

algorithm does not break down in the ;%

iteration if and only if
det( M,')*O,

proposition 4.1. The

i=1,2,..,J

In the modified method the subspace spanned by
Vk:{ Vl: Vz,...,
the Krylov subspace spanned by the vectors

k_
(v}, Av], A%vl .., A° Yy1 ), and the

Vi } is the same as

subspace spanned by W,=
{ W,, W, .., W, is the same as the
Krylov subspace spanned by the vectors

T k—
{w) ATwl ..., A% 'wih

proposition 4.2. The modified biorthogonal
Lanczos algorithm does not break down in the
kth iteration if and only if

det{ M ;))+#0, i=s,2s,...,ks

proof. Let v and w: be the modified

biorthogonal Lanczos vectors. For each k, v }b,
1<i<s, is a linear combination of the first
(B—1)s+1 columns of R while w } is the

same linear combination of the column L, up to
a scaling. This can be expressed compactly in
matrix notation as

V/,=R—I?—T

We=L K T @D

whereT{ is the lower triangular whose diagonal
elements are 1.

using (41) we can rewrite M as

M=LTR=(KW'XVEKD),
that is,
M=K W WEK"
The  matrix W'V  equals to diag
 mTvy,..

row operations including exchanging rows, we

, W[ V). By a sequence of

—r— .
can reduce W V, to an upper triangular

matrix U, with nonzero diagonal elements and

de W ) =+de Up).
Let U=diagl Uy,..., U
then det( W™ V)= +de U),
that is det(M) = det{ W' V)=
de W, Vi)e e ede Wy Vp.
This proves the proposition.V

The standard biorthogonal Lanczos algorithm
produces a tridiagonal matrix T ; by the end of
step (= ks) and the modified method produces
a block tridiagonal matrix T .

V. Numerical Experiments

derived from the
five-point discretization of the following partial

The test problem was

differential equation:
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— (b u),— (cu,),+ (d),
+ (ew) ,+fu=g

on the unit square, where

Hx,=e™ ™ clx,y)= e

dx,y)=BRx+y), elx,y)=rx+y)
-1

Rz, 9) = 1+x+y’

subject to the Dirichlet boundary conditions
u=10 on the boundary. In the test we took
y=0.0,8=0.0 , which yielded a symmetric
matrix and y=50.0, £=1.0, which yielded a
nonsymmetric matrix. Table 51 and 52 show

that matrices generated by the standard and
modified biorthogonal Lanczos method have the

5 in

accuracy

largest eigenvalues, but the
modified  method
eigenvalues has been observed. We tested the
methods on the problem of size N=4096. In
the standard and modified biorthogonal Lanczos

methods, we find the largest eigenvalues after a

same

loss of for

reduced matrix of a certain size is generated, so

these biorthogonal Lanczos

methods require minimal storage and time. Next
we show the reduced breakdown effect of the
new biorhtogonal Lanczos method compared to
the standard one. We borrow the example from
(5

OO~ O
OO OO
OSDOHOOO
O OOOO
—_O oo o O
OO O OO

The eigenvalues of A are the roots of unity, ie.

A= e for j=0,..,N—1 where N is
the dimension of A. The biorthogonal Lanczos
method starts with initial vectors

ri=s{= 112345617 on the CRAY

machine. At step 4, the standard biorhogonal

Lanczos method normalizes s, and 7, by

factors of vV 10 _13, producing elements in the

reduced tridiagonal matrix 7T of size 102 on
the CRAY machine. The 3-step biorthogonal

Table 5.1. Largest eigenvalues using the biorthogonal Lanczos method( 7 =0.0, 8 =0.0)

3-step

4-step

5-step

T, standard 2-step
10x10| 0.98652673FE10 | 0.98652673E10
2020 0.10202484E102| 0.10202484E10 2
30X30 | 0.10204000E102 | 0.10204000E10 *
40340} 4 10904000£102 | 0.10204000E10 2

0.10204000£10 2

0.10202484E10

0.10204001E10 2

0.98652673E10
0.10202491E10 *
0.10202016 £10 2
0.10202015E10 2

Table 5.2. Largest eigenvalues using the biorthogonal Lanczos method( 7 =50.0, 8=1.0)

3-step

4-step

S5-step

T; standard 2-step
10x10| 0.98652673E10 | 0.98652673E10
20%20 | 0.10202484E102| 0.10202484E10 2
30x30 | (,10204000E10 2| 0.10204000E10 2
40401 o 10204000E10 2| 0.10204000E10 2

0.10204000E10 2

0.10202484E10 *

0.10204001E10

0.98652673E10
0.10202491E10 2
0.10202016£10 *
0.10202015E10 *
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Lanczos method avoids the large element growth
in reduced matrix and can generate a 3X3 block
tridiagonal matrix which has the sixth root of
unity. At the second iteration of the 2-step
method we have to solve a linear system with 2
X2 matrix. This can be explained by proposition
4.2.

VI.Conclusion

We have showed a modified biorthogonal
method to generates reduction matrices which
are similar to the reduction matrices generated
by the standard biorthogonal Lanczos method.
Therefore the new method results in the same
eigenvalues as the standard method. We prove
that series breakdown conditions are decreased
in the resulting algorithm and we show the
decreased breakdown condition by the numerical
test. For large s$>5 loss of accuracy for
eigenvalues has been observed.
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