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A Proposal on a MultipleCycle Binary
Sequence Generator with a ST-LFSR
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Abstract The number of keystream cycle sequences has been proposed as a characteristic of binary sequence
generators for cryptographic applications, but in general most binary sequence generators have the only
one-cycle sequence. In this paper, we propose a switching-tap LFSR as a basic function of a multiple-cycle
binary sequence generator and the improved Rueppel’s multiple-cycle generator. Finally we analyze its period,
linear complexity, and the number of its keystream cycle sequences.

1. Introduction

The two basic methods for encrypting text into
ciphertext are stream and block ciphers. Stream
ciphers encrypt text bit-by-bit and are used in
commercial applications such as RCA[8]. The
advantage of a stream cipher is that it is faster and
much more efficient than block ciphers. For example,
RC4 is close to twice as fast as the nearest block
cipher and can be written in 30 lines of code whereas
the typical block cipher algorithm takes several
hundred lines of code, making them ideal for Internet
applications like SSL were speed and efficiency is
most valuable[10].

The problem with stream ciphers is twofold[10].
First, to be implemented properly, each encryption
key should be used only once. Using a key more
frequently makes it much more vulnerable to attack.
The creation of mnuitiple keys can cause key
management issues in applications where keys need
to be stored for long periods of time. The second
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problem is that stream ciphers have not been widely
adopted, so interoperability becomes an issue. If the
person on the receiving end of the message does not
have the ability to decrypt a stream cipher message,
it is pointless to use.

On the other hand, Beker and Piper [1] proposed
three  basic reguirements of stream cipher
(cryptography) :© a long period, randommess and a
large linear complexity (LO). Subsequently,
Siegenthaler (3} proposed to a requirement for a large
correlation-immune property and Golic [4] suggested
the number of output sequences (muitiple-cycle
sequence). Now we mean that the security
requirement of the number of output sequence is a
great solution of the multiple keys’ problem, the first
problem in reference [101.

Most binary sequence generators (BSG) in the
literature have the only one-cycle sequence. In this
case they always generate an output sequence having
different starting points on the same cycle sequence.
However, especially in cases of having multiple-cycle
sequences, they generate different sequences from
different cycles by changing initial values (keys). The
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greater the number of cycle sequences, the stronger
the resistance to attack on the BSG.

In this paper, we present that a single—cycle
sequence generator has a cryptographic weakness to
Dawson's attack [5] in a special case, but ot in a
multiple-cycle sequence. And we propose a
switching-tap LFSR (ST-LFSR) which is selected
from one of N (2<N<A(n)) feedback-taps in
memory by the initial value (secret key). Then we
apply it to the generalized binary sequence generator
with a nonlinear combine function and improve upon
Rueppel’s generator as an example. Finally, we
analyze the period, the linear complexity and the
number of keystream cycle sequences of the improved
Rueppel’s multiple-cycle generator.

2. The number of keystream cycle sequences

Because 7-stage LFSR (linear feedback shift
register) generates linear recurring sequences, it is
possible to predict feedback-connection-taps from a
known 2 z-bit output sequence [1-2). To strengthen
nonlinearity in general we increase the linear
complexity by a nonlinear combining function from
N 1FSRs,

Property 1. All of the n-stage LFSRs generate
the maximum period, P= (2"—1), only when
non—null initial states [1-2]. And 7 -stage 1FSR is
obtained from the #nth order of primitive
polynomials.

Property 2. The number of the nth order of
primitive  polynomials is = A( n)=ﬂ2;jl[2].

Where &( - ) is the Euler’s totient function.

It is required to synchronize two keystream output
sequences both in the sender and in the receiver for
a secure commumication; we call this “keystream
synchronization”. Keystream synchronization initiates
all of the shift registers in the generator by the
secret key and coincides with each two starting
points of a keystream cycle both in the sender and

in the receiver.

On the other hand, Dawson [5] proposed that
re-using the same keystream may be subject to
attack. He suggested that the attack was fully
automated and based on knowledge of the plaintext
statistics only.

Let the past plaintext be P=1)0,,p1', ﬁzl,... ,

the past keyst:eam K'=k0',k11,k2’,..., the
past ciphertext C =c¢y’,¢;",¢;,..., the present
plaintext P=p0,ﬁl,ﬁz,..., the resent

keystream K=k, ky, ko, ...
ciphertext C= ¢g, ¢y, ¢y, ... .
From the assumption that the same key was used

in generating keystream ( K= K') both the sender
and the receiver,

and the present

C= Do:‘”ko: ,Dlje’kl: JD2'oky , pyeky’ o
D4 kai ’DS @ks seee

C= peky, piok), pok;, Dok, )
p@k4,ﬁ5®k5y e

CoC = ﬂo:@i’o,h:@ﬁx,ﬁz’eﬁzy pi'eps, (3)
Dyopy, D5 eps, ...

Because XORing the present ciphertext with the
past ciphertext results in XORing of two plaintexts, it
is breakable from the redundancy of the plaintext by
Dawson's attack. Therefore in each commmmication it
is required that a different keystream cycle be used
and that synchronization on the secret session key be
estabilished.

Definition 3. The number of keystream coyde
sequences is defined to the total number of different-
and same-sized keystream cycle sequences, which is
changeable by the initial values on a keystream
generator.
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Fig. 1. Keystream cycle structures.

Fig. 1 illustrates the relationship between the
number of keystream cycles and the crypto-degree
in a stream cipher. In general, in single-cycle
sequence cases (Fig. 1 a)), keystreams are generated
from only one cycle, which has different starting
points, S; and Sy, from different session keys. In

this case their folding up on the same cycle makes
them vulnerable to Dawson's attack. On the other
hand, in multiple-cycle sequence cases (Fig. 1 b)), the
probability of the cycle sequence folding up is nearly
zero, because most of the cycle sequences are
generated from different cycles on different session
keys. The sequences are more difficult to predict in
multiple-cycle than those in single-cycle, and so they
are similar to the one-time pad in the best cases (a
different key leads to a different cycle). Let the two
different cycles (b;), (b;) (i%j) of period P be

as follows:

(b1)= bi), b,],bg,b,:;, ...,b,‘,@, ...,b,‘_p_l, (4
by, ba,...,i=1,2,...,N

(b;)= bﬂ), bll’bﬂ’ b)3, "-rbikv ""bi.P‘lv (5)
,o,b,1,....]=l,2,...,N

Definition 4. For integer %2 (0<A<P ) and J,
if two sequences (b,) and (&), k times cyclic
rotations of the sequence (5;), are different from
each other and coincide only when j=17 over N,
then the number of keystream cycle sequences is N:

) = R, { TG

over N

where Rof((x),%k) is k times cyclic rotations of
the sequence (x) .

In this paper we propose to enlarge the number of
keystream cycle sequences by changing the linear
input part in a generalized sequence generator with
the nonlinear combine function.

3. Swilching-tap multiplecycle binary se-
quence generator

1) Switching—tap LFSR

Theorem 5. A n-stage LFSR has a unique cycle.

Proof. A n-stage LFSR has the maximum period,
2"—1, and it excepts the only null state over all
2" states. Therefore, it has a unique cycle, and
altering the initial value to the LFSR  feedback
connection generates the same cycle sequence, too,
but at a different starting point. [

A LFSR with a fixed feedback-tap has a unique
cycle, and the total number of LFSR's feedback

connections with length # are /1(n)=—0-(Ln—‘ll,
which is the maximum possible number of
configurations in feedback-tap. In this way the
switching-tap LFSR (ST-LFSR, Fig. 2) is a specially
configured LFSR which switches the feedback-tap
function f; of the FT (feedback-tap) table in
memory, selected by session key.
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Fig. 2. A n-stage ST-LFSR.

Property 6. Let N(2<N<A(n)) be the number
of feedback-tap functions in a #»-stage ST-LFSR,
stored in memory. Then a n-stage ST-LFSR has the
number of keystream cycle sequences with N.

Reference [6] mentioned an easy method for finding
n-stage feedback connections, primitive polynomials,
From a properly selected N, smaller than or equal
to A(#n), we can generate the sequences with N
multiple-cycles.

2) Switching-tap multiple-cycle binary sequence

generator

The generalized binary sequence generator with a
nonlinear combine function has a lot of LFSRs. We
apply ST-LFSR to the generalized binary sequence
generator by changing the IFSR feedback
connections to improve the number of cycle sequences
with N. We can choose a proper N in a LFSR or
asetof M LFSRs : ¢ (¢#=0,1,2,...) instant
output (&), i=1,2,..N, is
b = Ray(D), axd),...,am(D)) where aid)
is a t-instant output sequence of
LFSR; (7=1,2,...,M) and ayld is the ¢
-instant output sequence of LFSR, which is a

sequence of

ST-IFSR and at least apu{?) has N
rultiple-cycles, so (4;) has N multiple-cycles too.

For example, we can improve Rueppel’s generator {7}
by changing the first m-stage LFSR to a m
-stage ST-LFSR as in Fig. 3.

@ o s

Fig. 3. An improved Rueppel’s muitiple-cycle
generator.

Theorem 7. The inproved Rueppel’s generator has
the following cryptographic properties:

) Period, P= (2"-1)(2"-1).

2) Linear complexity, LC= P.

3) The number of keystream cycle sequences with
N.

Proof. 1) and 2). After setting the initial values to
two IFSR, LFSRl and LFSR2, the improved
generator operates the same as the origin. Therefore,
the properties of the period and the linear complexity
of the output sequence are the same as that of the
origin[7-10].

3) Because the improved generator can be
changeable of the feedback functions by N, It should
have been the number of N-multiple cycle sequences
by Definition 3. O

In terms of the cryptographic strength of the
improved Rueppel’s generator, it has the same period
and the same linear complexity, but the number of
cycle sequences is improved N times over the
original Rueppel’s generator because ST-1FSR is a
kind of LFSR for a full period.

4. Conclusion
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In this paper we adapted the number of cycle
sequences to the element of cryptographic strength in
stream cipher. In multiple-cycle sequence cases, the
probability of the cycle sequence folding up was
nearly zero, because the most of the sequences were
generated from different cycles on different session
keys. In these cases the sequences were more
difficult to predict in multiple-cycle than those in
single-cycle and so they were similar to the one-time
pad in the best cases (a different key leads to a
different cycle). We proposed a multiple-cycle binary
sequence generator based on a switching-tap LFSR,
which was selected from one of N (2<N<A(#n))
feedback-taps in the memory table by an initial value
(key). We then applied it to Rueppel’s generator as
an example, which had the same period and the same
linear complexity, but the number of keystream cycle
sequences was improved N times to the original
generator.
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